Escape rate for $2$-dimensional Brownian motion conditioned to be transient with application to Zygmund functions
HTML articles powered by AMS MathViewer
- by Elizabeth Ann Housworth
- Trans. Amer. Math. Soc. 343 (1994), 843-852
- DOI: https://doi.org/10.1090/S0002-9947-1994-1222193-0
- PDF | Request permission
Abstract:
The escape rate of a 2-dimensional Brownian motion conditioned to be transient is determined to be $P\{ X(t) < f(t)$ i.o. as $t \uparrow \infty \} = 0$ or 1 according as $\sum \nolimits _{n = 1}^\infty {{e^{ - n}}\log f({e^{{e^n}}}) < }$ or $= \infty$. The result is used to construct a complex-valued Zygmund function—as a lacunary series—whose graph does not have $\sigma$-finite linear Hausdorff measure. This contrasts the result of Mauldin and Williams that the graphs of all real-valued Zygmund functions have $\sigma$-finite linear Hausdorff measure.References
- J. M. Anderson, E. A. Housworth, and L. D. Pitt, The spectral theory of multiplication operators and recurrence properties for nondifferentiable functions in the Zygmund class $\Lambda ^*_a$, Mathematika 39 (1992), no. 1, 136–151. MR 1176476, DOI 10.1112/S0025579300006902
- J. M. Anderson and Loren D. Pitt, On recurrence properties of certain lacunary series. I. General results, J. Reine Angew. Math. 377 (1987), 65–82. MR 887400
- J. M. Anderson and L. D. Pitt, Probabilistic behaviour of functions in the Zygmund spaces $\Lambda ^*$ and $\lambda ^*$, Proc. London Math. Soc. (3) 59 (1989), no. 3, 558–592. MR 1014871, DOI 10.1112/plms/s3-59.3.558
- Sheldon Axler, Harmonic functions from a complex analysis viewpoint, Amer. Math. Monthly 93 (1986), no. 4, 246–258. MR 835293, DOI 10.2307/2323672
- Richard Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984. MR 750829
- A. Dvoretzky and P. Erdös, Some problems on random walk in space, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 353–367. MR 0047272
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- John Hawkes, Probabilistic behaviour of some lacunary series, Z. Wahrsch. Verw. Gebiete 53 (1980), no. 1, 21–33. MR 576895, DOI 10.1007/BF00531609 E. A. Housworth, Escape rates for a conditioned 2-dimensional Brownian motion and recurrence results for analytic Zygmund functions with applications, Dissertation, Univ. of Virginia, 1992.
- G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294–319. MR 79377, DOI 10.1090/S0002-9947-1956-0079377-3
- Frank B. Knight, Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143 (1969), 173–185. MR 253424, DOI 10.1090/S0002-9947-1969-0253424-7
- Frank B. Knight, Essentials of Brownian motion and diffusion, Mathematical Surveys, No. 18, American Mathematical Society, Providence, R.I., 1981. MR 613983, DOI 10.1090/surv/018
- Simon Kochen and Charles Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964), 248–251. MR 161355
- R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
- C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1–31. MR 130336, DOI 10.1112/S0025579300002084
- Tokuzo Shiga and Shinzo Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 37–46. MR 368192, DOI 10.1007/BF00736006
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 843-852
- MSC: Primary 60J65; Secondary 30D40
- DOI: https://doi.org/10.1090/S0002-9947-1994-1222193-0
- MathSciNet review: 1222193