Minimal displacement of points under holomorphic mappings and fixed point properties for unions of convex sets
HTML articles powered by AMS MathViewer
- by Tadeusz Kuczumow, Simeon Reich and Adam Stachura
- Trans. Amer. Math. Soc. 343 (1994), 575-586
- DOI: https://doi.org/10.1090/S0002-9947-1994-1242784-0
- PDF | Request permission
Abstract:
Let D be an open convex bounded subset of a complex Banach space $(X,\left \| \cdot \right \|)$, and let C be the union of a finite number of closed convex sets lying strictly inside D. Using the Kuratowski measure of noncompactness with respect to the Kobayashi distance in D, we first show that if $f:D \to D$ is a holomorphic mapping which leaves C invariant, and if the Lefschetz number $\lambda ({f_{|C}}) \ne 0$, then $\inf \{ \left \| {x - f(x)} \right \|:x \in C\} = 0$. We then deduce several new fixed point theorems for holomorphic and nonexpansive mappings.References
- Asuman G. Aksoy and Mohamed A. Khamsi, Nonstandard methods in fixed point theory, Universitext, Springer-Verlag, New York, 1990. With an introduction by W. A. Kirk. MR 1066202, DOI 10.1007/978-1-4612-3444-9
- Józef Banaś and Kazimierz Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980. MR 591679
- L. P. Belluce, W. A. Kirk, and E. F. Steiner, Normal structure in Banach spaces, Pacific J. Math. 26 (1968), 433–440. MR 233178
- M. S. Brodskiĭ and D. P. Mil′man, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837–840 (Russian). MR 0024073
- Ralph DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141. MR 159229
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Clifford J. Earle and Richard S. Hamilton, A fixed point theorem for holomorphic mappings, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 61–65. MR 0266009
- Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206–208. MR 291917, DOI 10.1090/S0002-9904-1972-12918-5
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- Tullio Franzoni and Edoardo Vesentini, Holomorphic maps and invariant distances, Notas de Matemática [Mathematical Notes], vol. 69, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 563329
- M. Furi and M. Martelli, A Lefschetz type theorem for the minimal displacement of points under maps defined on a class of ANR’s, Boll. Un. Mat. Ital. (4) 10 (1974), 174–181 (English, with Italian summary). MR 0448340
- K. Goebel, Fixed points and invariant domains of holomorphic mappings of the Hilbert ball, Nonlinear Anal. 6 (1982), no. 12, 1327–1334. MR 684968, DOI 10.1016/0362-546X(82)90107-9
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- Kazimierz Goebel and Simeon Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 8, 349–352. MR 683261
- Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR 744194
- Kasimierz Goebel and Rainald Schöneberg, Moons, bridges, birds$\ldots$and nonexpansive mappings in Hilbert space, Bull. Austral. Math. Soc. 17 (1977), no. 3, 463–466. MR 477898, DOI 10.1017/S0004972700010728
- K. Goebel, T. Sekowski, and A. Stachura, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4 (1980), no. 5, 1011–1021. MR 586863, DOI 10.1016/0362-546X(80)90012-7
- Kyong T. Hahn, Geometry on the unit ball of a complex Hilbert space, Canadian J. Math. 30 (1978), no. 1, 22–31. MR 477165, DOI 10.4153/CJM-1978-002-6
- Lawrence A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in holomorphy (Proc. Sem. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland Math. Stud., vol. 34, North-Holland, Amsterdam-New York, 1979, pp. 345–406. MR 520667 M. S. Khamsi, On the $wea{k^\ast }$-fixed point property, Contemp. Math., vol. 85, Amer. Math. Soc., Providence, R.I., 1989, pp. 325-337.
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770 Cl. Krauthausen, G. Müler, J. Reinermann, and R. Schöneberg, New fixed point theorems for compact and nonexpansive mappings and applications to Hammerstein equations, Sonderforschungsbereich 72 an der Universität Bonn, 1975.
- Tadeusz Kuczumow, Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of $n$ Hilbert balls, Nonlinear Anal. 9 (1985), no. 6, 601–604. MR 794829, DOI 10.1016/0362-546X(85)90043-4 —, Nonexpansive mappings and isometries of Hilbert n-balls with hyperbolic metrics, Rozprawy Wydzialu Mat.-Fiz.-Chem., Rozprawy Habilt. 44, Lublin, 1987.
- T. Kuczumow, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math. 55 (1988), no. 1, 101–107. MR 964327, DOI 10.4064/cm-55-1-101-107
- Tadeusz Kuczumow and William O. Ray, Isometries in the Cartesian product of $n$ unit open Hilbert balls with a hyperbolic metric, Ann. Mat. Pura Appl. (4) 152 (1988), 359–374. MR 980988, DOI 10.1007/BF01766157
- Tadeusz Kuczumow, Simeon Reich, Malgorzata Schmidt, and Adam Stachura, Strong asymptotic normal structure and fixed points in product spaces, Nonlinear Anal. 21 (1993), no. 7, 501–515. MR 1241825, DOI 10.1016/0362-546X(93)90007-F
- Tadeusz Kuczumow and Adam Stachura, Convexity and fixed points of holomorphic mappings in Hilbert ball and polydisc, Bull. Polish Acad. Sci. Math. 34 (1986), no. 3-4, 189–193 (English, with Russian summary). MR 861176
- T. Kuczumow and A. Stachura, Fixed points of holomorphic mappings in the Cartesian product of $n$ unit Hilbert balls, Canad. Math. Bull. 29 (1986), no. 3, 281–286. MR 846705, DOI 10.4153/CMB-1986-043-6
- Tadeusz Kuczumow and Adam Stachura, Iterates of holomorphic and $k_D$-nonexpansive mappings in convex domains in $\textbf {C}^n$, Adv. Math. 81 (1990), no. 1, 90–98. MR 1051224, DOI 10.1016/0001-8708(90)90005-8 K. Kuratowski, Sur les éspaces complets, Fund. Math. 15 (1930), 301-309.
- Thomas Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), no. 1, 125–143. MR 722744
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), no. 4, 257–261 (English, with Russian summary). MR 690838, DOI 10.1007/BF02201775
- Roger D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. (4) 89 (1971), 217–258. MR 312341, DOI 10.1007/BF02414948
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
- Jean-Paul Penot, Fixed point theorems without convexity, Bull. Soc. Math. France Mém. 60 (1979), 129–152. Analyse non convexe (Proc. Colloq., Pau, 1977). MR 562261
- Simeon Reich, Averaged mappings in the Hilbert ball, J. Math. Anal. Appl. 109 (1985), no. 1, 199–206. MR 796053, DOI 10.1016/0022-247X(85)90187-8
- Simeon Reich, Nonlinear semigroups, holomorphic mappings, and integral equations, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 307–324. MR 843617, DOI 10.1090/pspum/045.2/843617 —, Approximating fixed points of holomorphic mappings, CAMS Report #91-4, Math. Japonica (to appear).
- Simeon Reich and Itai Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), no. 6, 537–558. MR 1072312, DOI 10.1016/0362-546X(90)90058-O
- J. Reinermann and R. Schöneberg, Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert-space, Fixed point theory and its applications (Proc. Sem., Dalhousie Univ., Halifax, N.S., 1975) Academic Press, New York, 1976, pp. 187–196. MR 0451052
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Itai Shafrir, Common fixed points of commuting holomorphic mappings in the product of $n$ Hilbert balls, Michigan Math. J. 39 (1992), no. 2, 281–287. MR 1162037, DOI 10.1307/mmj/1029004523
- Ryszard Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), no. 3, 723–725. MR 1050023, DOI 10.1090/S0002-9939-1991-1050023-1 A. Stachura, Fixed points of nonexpansive mappings in the sum of two sets, preprint.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 575-586
- MSC: Primary 47H10; Secondary 32K05, 47H09
- DOI: https://doi.org/10.1090/S0002-9947-1994-1242784-0
- MathSciNet review: 1242784