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STABILITY THEORY FOR PARAMETRIC GENERALIZED
EQUATIONS AND VARIATIONAL INEQUALITIES

VIA NONSMOOTH ANALYSIS

BORIS MORDUKHOVICH

Abstract. In this paper we develop a stability theory for broad classes of para-

metric generalized equations and variational inequalities in finite dimensions.

These objects have a wide range of applications in optimization, nonlinear anal-

ysis, mathematical economics, etc. Our main concern is Lipschitzian stability

of multivalued solution maps depending on parameters. We employ a new ap-

proach of nonsmooth analysis based on the generalized differentiation of mul-

tivalued and nonsmooth operators. This approach allows us to obtain effective

sufficient conditions as well as necessary and sufficient conditions for a natural

Lipschitzian behavior of solution maps. In particular, we prove new criteria for

the existence of Lipschitzian multivalued and single-valued implicit functions.

1. Introduction

This paper is concerned with parametric generalized equations of the form

(1.1) 0 e f(p, z) + Q(z)

where /: Rk x R" -> Em is a given continuous function and Q: Rn ^ Rm

is a given multifunction of closed graph. Our primary goal is to study the

dependence of the solution map

(1.2) Z(p):={zeRn:Oef(p,z) + Q(z)}

on the parameter p near a reference point. These questions are addressed

to local sensitivity analysis of the generalized equation (1.1) under parameter

perturbations.

The term "generalized equation" has been introduced by Robinson [28] who

has considered some important classes of generalized equations (1.1) with mul-

tifunctions Q of special structure. If Q c R" is a convex set and

{z* el": (z*, z-z') <0Vz' eil}   forzeQ,

0 otherwise
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Q(z) = N(z\Q) :=
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is the normal-cone operator in the sense of convex analysis [32], then the gen-

eralized equation (1.1) is reduced to the parametric variational inequality

(1.3)        find zefi such that (f(p, z), z - z') > 0 for each z'gíí

which is of particular interest for applications. It is well known that models (1.1)

and (1.3) cover a wide range of important problems in mathematical program-

ming, complementarity, mathematical economics, game theory, equilibria, etc.;

see Robinson [30] and Harker and Pang [8] for discussions and many examples.

As in most cases of mathematical models, sensitivity analysis is an important

part in the solution of generalized equations and variational inequalities. One of

the principal questions here is solution stability under parameter perturbations.

For models (1.1) and (1.3), stability questions are important not only for a

better understanding of the solution behavior with respect to perturbations, but

also for constructing effective numerical algorithms to solve the problems; see,

e.g., [8, 16, 24, 30].
There are many publications devoted to sensitivity analysis of variational

inequalities in forms (1.1) or (1.3); few of them also consider more general

cases of (1.1). We refer the reader to [6-8, 10, 15, 16, 23, 24, 26, 28-31, 37]
and bibliographies therein. Most works in the area conduct a local sensitivity

analysis of a given solution point under Robinson's strong regularity condition

[29] or some of its modifications; see §7 for the definition and discussions.

The strong regularity condition ensures the uniqueness of the solution to

(1.1) around the reference point and its locally Lipschitzian dependence on the

parameter. In general, the solution map (1.2) is not single-valued and turns out

to be a multifunction on the parameter. So, in the absence of strong regularity,

the question arises about Lipschitzian stability of the solution map (1.2) in an

appropriate sense.

Some results in this direction have been already obtained in the first Robinson
paper on generalized equations [28] where the upper Lipschitzian property of

the solution map (1.2) has been studied. This property describes a kind of

unilateral Lipschitzian behavior of multifunctions which is not reduced to the

classical local Lipschitzness in the case of single-valued maps. The recent papers

[7, 10, 15, 24, 26] contain new conditions ensuring an upper Lipschitzian type

of behavior for solution maps to variational inequalities.

Traditional approaches to the sensitivity and stability questions in generalized

equations/variational inequalities are based on fixed point arguments, contrac-

tive mapping principles, and related tools in analysis and topology; see, e.g., [6,

8, 10, 28-31]. A number of new results for parametric variational inequalities

have been recently obtained in [7, 24] by using degree theory arguments.

When Q(z) = 0, the generalized equation (1.1) is converted to a system of

standard (ordinary) parametric equations. In this case, (1.2) defines an implicit

function (or multifunction) depending on the parameter p . In general, the form

of ( 1.1 ) successing the form of ordinary equations is helpful for extending some

methods and results to the generalized case (1.1) by analogy with the classical

setting. Note also that there is a way to obtain an ordinary parametric equation

equivalent to the variational inequality (1.3) by using the normal (Minty) map;

see, e.g., [10 and 31]. This map is related to the projection operator on the

set fi and turns out to be nondijferentiable even in the case of smooth

functions /.
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In this paper, we consider generalized equations and variational inequali-

ties in Robinson's form (1.1) which is proved to be convenient for the theory

and applications. In many cases where formalism (1.1) seems particularly use-

ful, the vector function / is sufficiently smooth while the multivalued part Q

accumulates the nonsmoothness ("corners") inherent in the problem. Such non-

smoothness is a natural feature of generalized equations and cannot be avoided

under any transformations. So, the generalized equation model (1.1) appears

to be a real "nonsmooth" problem which might be studied by methods of non-

smooth analysis.

The heart of nonsmooth analysis is generalized differentiation of nondif-

ferentiable (in classical senses) functions and set-valued mappings. There are

various concepts of generalized derivatives which are useful in the optimization

theory, related areas, and applications; we refer to the monographs [2, 4, 19,

36] and citations therein. Some of these concepts have been recently used in the

sensitivity analysis of nonsmooth equations in standard or generalized forms.

Namely, Robinson [31] employs the concept of strong Bouligand (B-) derivative

of nonsmooth functions for obtaining Lipschitzian implicit-function theorems

in ordinary equations and variational inequalities. King and Rockafellar [10]

and Pang [24] provide sufficient conditions for upper Lipschitzian properties

of solution maps using related constructions for multifunctions connected with

the contingent derivative.

This paper is devoted to a systematic study of the Lipschitzian stability for

parametric generalized equations in form (1.1) where Q is permitted to be

an arbitrary closed-graph multifunction. In general, the solution map (1.2) to

(1.1) is multivalued. In our stability analysis, we concentrate on Lipschitzian

properties of (1.2) which generalize the classical local Lipschitzness around the

reference point (i.e., in some of its neighborhood).
The main attention will be paid to the so-called pseudo-Lipschitzian prop-

erty of the solution map (1.2) around a given point in its graph. This prop-

erty of multifunctions introduced by Aubin [ 1 ] appears to be equivalent to the

well-known openness and metric regularity properties of the inverse operators.

For the case of single-valued maps, the pseudo-Lipschitzian property coincides

with the usual Lipschitz continuity. Moreover, if a multifunction is pseudo-

Lipschitzian and monotone, then it must be locally single-valued. We refer to

§3 for more details about pseudo-Lipschitzian and related properties of multi-

functions.

In [1], Aubin studies the pseudo-Lipschitzian behavior of solution maps to

perturbed convex minimization problems. Rockafellar's thorough study [34] is

addressed to the Lipschitzian stability of general constraint systems including so-

lution maps to parametric generalized equations. Both papers [1, 34] and some

other publications provide sufficient conditions for the pseudo-Lipschitzian

property of solution maps employing Clarke's derivative-like constructions in

nonsmooth analysis; see [4].

For parametric systems like (1.2), the conditions obtained are expressed in

terms of Clarke's normal (or tangent) cone to the graph of Q and turn out to

be too restrictive for applications in many important problems. They actually

require certain smoothness of the multifunction Q and do not cover at all the

cases of variational inequalities and complementarity problems. The reader can

find more details and references in §3 and Remark 4.9.
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In this paper we employ other derivative-like constructions in nonsmooth

analysis which were first used in Mordukhovich [17, 18] for obtaining neces-

sary optimality conditions in nonsmooth problems. These objects are usually

much smaller than Clarke's ones and take nonconvex values. They always pos-

sess robust (stability) properties with respect to perturbations and enjoy a rich

calculus important for applications. We refer the reader to the next section for

more information.

The main construction used in this paper for studying the Lipschitzian stabil-

ity is the coderivative of multifunctions. This object appears to be an adequate

tool for complete characterizations of locally Lipschitz behavior for arbitrary

closed-graph multifunctions in finite dimensions. One can find various crite-

ria for pseudo-Lipschitzian and related properties of general multifunctions in

Mordukhovich [20, 22, 23]. Some of these criteria are employed here for ob-

taining Lipschitzian stability results in parametric generalized equations and

variational inequalities.

We have been concerned with this topic in [23] by reducing (1.1) to more

general nonsmooth constraint systems. Here we develop another approach to

Lipschitzian stability of (1.1) and (1.3) which brings together criteria in non-

smooth analysis and linearization/strong approximation procedures in the spirit

of Robinson [28, 29, 31]. In this way, we obtain new necessary and sufficient

conditions as well as refined sufficient conditions for Lipschitzian stability of

the solution maps to (1.1) and (1.3) which essentially strengthen some of the

results in [23] and other publications.

The organization of the paper is as follows. Section 2 contains some back-
ground material on generalized differentiation of multifunctions and non-

smooth mappings including first and second order subdifferentials for extended-

real-valued functions. We provide main calculus rules which are broadly used

in what follows.

In §3 we consider Lipschitzian properties of general multifunctions and also a

special class of multivalued operators whose graphs are Lipschitzian manifolds

in the sense of Rockafellar [35]. This class includes, in particular, all monotone

operators and covers a wide range of applications. We present useful charac-

terizations of the locally Lipschitz behavior of multifunctions in terms of the

nonconvex coderivative introduced as well as their "strictly smooth" analogues

in terms of the Clarke counterpart.

Section 4 is devoted to the stability theory for linear systems (1.1) and (1.3).

Using the derivative-like constructions in §2, we obtain necessary and sufficient

conditions for the pseudo-Lipschitzian property of the solution map (1.2) in the

general case of ( 1.1 ) and for special representations of the multifunction Q.

In §5 we deal with nonlinear generalized equations (1.1) where the function f

is smooth in the decision variables. Using a recent result in Dontchev and Hager

[6], we reduce the study of the pseudo-Lipschitzian property for the solution

map ( 1.2) to the corresponding property of the solution map to a linearized

system. Then we obtain effective conditions for the Lipschitzian stability of

(1.1) and (1.3) in the smooth case employing criteria in §4.

In §6 we develop the latter linearization (approximation) procedure to the

case of nonsmooth generalized equations with functions / admitting a strong

approximation in Robinson's sense [31]. We obtain sufficient conditions for

the pseudo-Lipschitzian property of the solution map (1.2) in terms of our
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generalized derivatives for the initial data in (1.1) and (1.3). For the case of

Q(z) = 0 in (1.1), the results obtained provide new conditions ensuring the

pseudo-Lipschitzness of implicit multifunctions.

The concluding §7 deals with generalized equations (1.1) where Q is a mono-

tone operator. This includes the case of variational inequalities (1.3) due to the

well-known monotonicity of the normal-cone multifunction Q(z) = N(z\Ci) for

any convex set Q. For such a class of monotone equations, we obtain refined

sufficient conditions as well as necessary and sufficient conditions ensuring the

local single-valuedness and Lipschitz continuity of solution maps. In particular,

the results obtained imply necessary and sufficient conditions for Robinson's

strong regularity in a rather general setting.

In this paper we basically use standard notation; see, e.g., [4, 22, 32]. For a

multifunction O: 1" =$> Rm , we denote by

DomO = {x: O(x) / 0},     ImO = {y e O(x): x e DomO},

KerO={x: 0 e O(x)}

its domain, image, and kernel. The set

limsupO(x) := {y e Rm : 3 sequences xk —> x, yk -» y
x—>x

with yke$(xk)Vk =1,2,...}

is called the Kuratowski-Painlevé upper limit of the multifunction O(x) asx-»

x.

If tp: R" -> R = [-co, oo ] is an extended-real-valued function, then its

lower and upper limits are denoted, respectively, by lim and lim. The symbol

x(e Q) -> x means that x-*x with xefl. The adjoint (transpose) matrix

to A is denoted by A*.

2. Generalized differentiation of multivalued

and nonsmooth operators

This section is devoted to reviewing some results in nonsmooth analysis which
are broadly used in the main body of the paper. We develop an approach to

generalized differentiation of nonsmooth mappings and multifunctions based

on the concepts in Mordukhovich [17-19]. Let us begin with the definition of

a normal cone to an arbitrary set in finite dimensions.

Let Q be a nonempty closed set in R" and let

P(x, SI) := {co e Q: ||x - a>\\ = dist(x, Q)}

denotes the set of best approximations of x in Q with respect to the Euclidean

distance dist(x, Q). The closed cone

(2.1) N(x\Q) := limsup[cone(x - P(x, Q))]
X—fX

is called the normal cone to Q at the point xefl.

If Q is a convex set, then the normal cone introduced coincides with the

normal cone of convex analysis. In general, the normal cone (2.1) may be

nonconvex in very simple situations. For example, if Q = gph|x| with x e R,

then one easily has

N(0, Q) = {(v, u) eR2:u< -Wu = \v\}.



614 BORIS MORDUKHOVICH

It turns out that the Clarke normal cone to Q at x always coincides with the

convex closure of (2.1), i.e.,

(2.2) A/c(x|Q) = clcoAT(x|Q).

(This is actually the "proximal normal formula" in [4, Proposition 2.5.7].)

Let us observe that the taking of the convex closure as in (2.2) may dramat-

ically enlarge the normal cone (2.1). In particular,

Arc(0|gph|x|) = K2

for the set Q in the example above. Such a picture is typical for sets which are

locally represented as graphs of Lipschitz continuous functions; see the next sec-

tion. Moreover, the convexity operation in (2.2) may spoil some nice properties

enjoyed by the normal cone (2.1). We refer to [9, 19, 36] for more details.

For all x e f2 let us consider the so-called Fréchet normal cone

(2.3) A^xIf^-ix'eE":     lira    ||x' - x\\~x(x*, x' - x) < o)
( *'(eQ)->x J

which is always convex and coincides (in finite dimensions) with the polar to

(Bouligand) contingent cone; see, e.g., [2, Chapter 4]. The following important

representation was first obtained in Kruger and Mordukhovich [11, 12]; cf. also

[9, Theorem 1] and [19, Theorem 1.1].

Proposition 2.1. One has

W(x|Í2) = limsupÁ>(x|fi).
x{eQ)^x

for any closed sets ilcl" and points x e Q.

It follows from (2.2) and Proposition 2.1 that

(2.4) 7V(x|Q) c N(x\Q) c Nc(x\Q).

The set Q is called regular at the point x e Q if the three normal cones in

(2.4) coincide. It happens for all convex sets as well as for "smooth" sets which

are locally described by equality and inequality type constraints with smooth

functions under the well-known Mangasarian-Fromovitz constraint qualifica-

tion; see [19, Proposition 1.5 and 33, Theorem 2F]. On the other hand, this

regularity is always broken for sets locally represented as graphs of nonsmooth

Lipschitzian functions as in the example above. But such sets naturally ap-

pear in the following coderivative constructions which are realizations of the

geometric (graphical) approach to differentiation going back to Fermât.

Let <S>: R" => Rm be a multifunction of closed graph.   The multifunction

Z)*<D(x, y): Rm => R" defined by

(2.5) Z)*<D(x, y)(y*) ■= {x* e Rn: (x*, -y*) e N((x, y)|gph<D)}

is called the coderivative of O at the point (x, y) e gph <P. The symbol

D*<5>(x)(y*) is used in (2.5) when <I> is single-valued at x.

If the normal cone (2.1) in formula (2.5) is replaced by the normal cones

(2.2) or (2.3), then the constructions

(2.6) ¿>c<D(x, y)(y*) := {x* e R": (x*, -y*) e Nc((x, J0|gph4>)},
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(2.7) 5*<D(x, y)(y*) := {x* e Rn: (x*, -y*) e N((x, y)|gph<D)}

are called, respectively, the Clarke coderivative and the contingent coderivative

of O at (x,y).

The primary tool of the nonsmooth analysis employed in the paper is the

coderivative (2.5). Let us consider some properties of this object important for

our applications.

Proposition 2.2. For any multifunctions O and points (x,y) e gphO, y* e

Dom D*0(x, y), one has

(2.8) D*®(x,y)(y)=        limsup        D*Q(x,y)(y*),
(x,y)(egphO)—(x,y)

y'—y'

(2.9) D*<í>(x,y)(y)=        limsup        D*<t>(x,y)(y*).
U,y)(egph*H(x,y)

y'^T

Proof. Property (2.8) follows directly from definitions (2.5) and (2.1). Repre-

sentation (2.9) is implied by Proposition 2.1 with Í2 = gphO.   D

Remark 2.3. Let us observe that (2.8) means the robustness (stability) of the

coderivative (2.5) with respect to perturbations of the initial data. This prop-

erty is of great importance for various applications, especially to sensitivity

analysis of perturbed problems. Note that such a robustness may be broken

for the Clarke coderivative (2.6); see an example in Rockafellar [33, p. 22].

This robustness property is always broken for the contingent coderivative (2.7)

of any multifunction O whose graph is a nonsmooth Lipschitzian manifold

around (x,y); see Proposition 3.3. Representation (2.9) actually means that

the coderivative (2.5) is a robust regularization of the contingent coderivative.

Remark 2.4. Note that the contingent coderivative (2.7) and the Clarke coderiv-

ative (2.6) are convex-valued and turn out to be dual constructions to, respec-

tively, the contingent derivative and the Clarke (circatangent) derivative of <I>

at (x, y) introduced by Aubin; see [2, Chapter 5]. In particular, the contingent
coderivative can be represented in the form

(2.10) D*<P(x,y)(y*) = {x*: (x\ v) < (y*,u) V(u, u) e gphD<D(x, y)}

where the contingent derivative D<S>(x, y) is defined as

(2.11) Z)fl>(x, y)(v) := limsup [°(* + %K) ~ y
h-*v,ti0 L T

in terms of the difference quotients; we refer to [1 and 36] for more details.

Being nonconvex-valued, the coderivative (2.5) is not dual to any tangentially

generated derivative construction. However, according to (2.9)—(2.11) it admits

an analytical representation in terms of limits of the difference quotients.

From (2.4) and (2.5)-(2.7) it follows that

(2.12) D<î>(x,y)(y*)cD*<!>(x,y)(y*)cD*c<P(x,y)(y*)   Vy* e Rm.

If all three coderivatives in (2.12) coincide, then the multifunction O is called

differentially regular at (x, y). This is obviously equivalent to the regularity

of the graph of <t> at (x, y). The next sufficient conditions for the differential
regularity are derived from [19, Proposition 3.2 and Corollary 3.3.2].
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Proposition 2.5.  O is differentially regular at (x,y) e gphí> if one of the fol-

lowing conditions holds:

(i) O: R" => Rm is a multifunction of convex graph. In this case one has

Z)*3>(x, y)(y*) = {x* e R": (x*, x) - {y*, y)

= max[(x*, x) - (y*, y)\(x, y) e gphd>]}.

(ii) <I> = /: R" —> Rm is single-valued around x and strictly differentiable at

x with the Jacobian V/(x) e Rmxn, i.e.,

\f(x)-f(x')-Vf(x)(x-x'y
lim_

x ,x'—>x

= 0.
||x-x'||

In this case one has

D*f(x)(y*) = {(Vf(x))*y*}   Vy*eRm.

It turns out that the property of differential regularity always fails for a broad

class of multifunctions whose graphs are nonsmooth Lipschitzian manifolds;

see the next section (Propositions 3.1 and 3.3) for more details. Moreover, the

coderivatives (2.5) and (2.6) are different in dimensions for such multifunctions;

in particular, the inclusion coD*0(x, y)(y*) c D*c<b(x, y)(y*) is proper.

Now let us consider an extended-real-valued function <p: R" —> R and define

its first and second order subdifferentials associated with the coderivative (2.5).

Let

<D(x) = E9(x) := {p e R: p > <p(x)}

be a multifunction with gph d> = epi q>. The set

(2 131 d-<p(x):=D*E9(x,(p(x))(l)

= {x*eR": (x*, -l)€iV((x, (p(x))\eoi<p)}

is called the (first order) subdifferential of (p at x e dom tp := {x e R" : \<p(x)\ <
oo} . If x £ domtp , then we put d~<p(x) := 0 .

Let x e dornç? and y e d~<p(x). The set-valued mapping d2'~(p{x, y):
Rn => W defined by

(2 14) d2'-tp(x, y)(u) := (D*d~<p)(x, y)(u)

= {veRn: (v, -u)eN((x,y)\ëvhd-tp)}

is called the second order subdifferential of cp at x relative to y .

Similarly one can define the following constructions of the superdifferential

and the second order superdifferential for tp :

(2.15) d+<p(x) := -d-(-<p)(x),        ¿>2'>(x, y)(u) := -(D*d+<p)(x, y)(-u)

which are also important in that unilateral analysis of nonsmooth functions <p

being essentially different from the subdifferential constructions.

Note that the subdifferential d~tp is reduced to the classical subdifferential of

convex analysis if <p is convex; d+<p is reduced to the classical superdifferential

for concave functions. Both first order semidifferentials in (2.13) and (2.15)

are set-valued generalizations of the strict differentiability: they are reduced to

the single gradient vector Vtp(x) for smooth (i.e., strictly differentiable at x)

functions <p . At the same time,

d2>-(p(x)(u) = d2- + <p(x)(u) = {(V2<p(x))*u}   Vw G Rn

if (p e C2 with the Hessian matrix V2tp(x).
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Properties of the first order subdifferential (2.13) and related constructions

have been studied in detail in Mordukhovich [17-20]. Various properties and

applications of this subdifferential can be found in many publications where

(2.13) is often used in some equivalent forms under different names (in partic-

ular, the approximate subdifferential and the set of basic or limiting subgradi-

ents). For more information we refer to [19, 20], Ioffe [9], and Rockafellar and

Wets [36].
If tp is lower semicontinuous (l.s.c.) around x, then the subdifferential

(2.13) is represented by [19, Theorem 2.2]

d~tp(x) =      limsup     d~tp(x)
x—>x,<p(x)—xp{x)

where the construction

B-,(x) := (*' e R-:  lim \<P(x') ~ <P(x)~ (x% x'- x)l > Q|

is well known in nonsmooth analysis as the Fréchet subdifferential; it coincides

with the subdifferential in the sense of viscosity solutions [5].

The function tp is called subdifferentially regular if

d~tp{x) - d~(p(x)

(see [19, §2.3]). When tp is Lipschitz continuous around x, the regularity

introduced coincides with the Clarke (subdifferential) regularity; cf. [4, §2.3]

and [33, §3]. The class of subdifferentially regular functions includes all convex

functions, smooth functions, "max functions", etc. On the other hand, there

are simple (and important) nonsmooth functions which are not subdifferentially

regular. For instance, tp(x) = -\x\, x e R, where d~(p(0) = {-1, 1} but

d~<p(O) = 0.
It is well known (see, e.g., [19, Theorem 2.1]) that

(2.16) dc<p(x) = co d~tp(x) = co d+tp(x)

for Clarke's generalized gradient [4] of any locally Lipschitzian function tp . At

the same time, if one changes the coderivative (2.5) by the Clarke coderivative

(2.6) in the second order subdifferential (2.14), then the construction obtained

may be much bigger than the convex hull of (2.14). It happens because graphs of

the first order subdifferential mappings for important classes of functions (e.g.,

for convex and saddle ones) are Lipschitzian manifolds. But Clarke's normal

cone is always a linear subspace for such manifolds; we refer again to the next

section. In particular, if tp is a closed proper convex function, then the Clarke

second order subdifferential

(2.17)
d1c'-9(x,y)(u):=(D*cd(p)(x,y)(u)

= {x* e R": (x*, -u) e N((x, y)\gvh<p)}

(cf. Aubin [1]) is an affine subspace in R" and cannot actually reflect any-

thing other than classical-like "two-sides" aspects of differentiation; see Corol-

lary 3.14.
Now let us consider some calculus rules for the coderivative (2.5) and the

subdifferential (2.13) used in this paper. Note that results for the subdifferential
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(2.13) immediately imply the corresponding results for the normal cone (2.1)

because

(2.18) N(x\Çi) = d-ô(x,D.)   atxeQ.

where S(-, f2) is the indicator of Q, i.e., S(x, Q) := 0 if x e Q and S(x, Q)
:= oo if x 0 Q. One can observe that the subdifferential regularity of the

function S(-, £2) at x is equivalent to the regularity of the set Q at this point.

The next result is crucial for the generalized differential calculus of nonconvex-

valued constructions (2.1), (25), (2.13)—(2.15);

Proposition 2.6. Let Oi and <S>2 be closed-graph multifunctions from R" into

Rm , and let y e <£>i (x) + 02(x). Let us assume that the sets

(2.19) M(x,y):={(yi,y2)eR2m:yie®(x), y2e02(x), yi+y2=y}

are bounded uniformly around (x, y) and one has

(2.20) D*®l(x,yl)(0)n(-D*<l>2(x,y2)(0)) = {0}   V(y{, y2) e M(x,y).

Then

D*(<D, +02)(x, y)(y*) c \J[D*®i(x, yi)(y*) + (yx, y2)

eM(x,y)D*®2(x,y2)(y*)].

The inclusion in (2.21) under the assumptions made is proved in [21, The-

orem 3.6] by using the metric approximation method which develops the tech-
nique in [17-19].

One can obtain various corollaries of Proposition 2.6 (including calculus rules

for the first and second order semidifferentials (2.13)-(2.15)) considering special

kinds of single-valued and multivalued mappings O, and ensuring conditions

(2.19) and (2.20). One such effective assertion is Corollary 3.6. The following

result guarantees equality in (2.21) without regularity assumptions.

Corollary 2.7. Let f: K" —> Rm be a single-valued function strictly differentiable

around x and let $>: R" => Rm be a multifunction of closed graph around

(x,y). Then one has

(2.22) D*(f+<!>)(x, f(x) + y)(y*) = (Vf(x))*y*+D*<î>(x, y)(y*) Vy* e Rm.

Proof. Let us put Q>i = f and 02 = O in Proposition 2.6. Then set (2.19) is
obviously bounded and condition (2.20) is fulfilled due to Proposition 2.5(h).

Thus (2.21) implies the inclusion c in (2.22). To prove the opposite inclu-

sion d , we put <J>i = -/ and 02 = / + <I> in Proposition 2.6 and use again

Proposition 2.5(h).   D

In this paper one can find many applications of Proposition 2.6 and its Corol-

laries 2.7 and 3.6. Note that the calculation of the coderivative (2.5) for single-

valued Lipschitzian vector functions can be reduced to the subdifferential (2.13)

due to the following result proved in [9, Proposition 8 and 19, Corollary 3.3.2].

Proposition 2.8. Let f:Rn^>Rm be a single-valued vector function Lipschitz

continuous around x and let

(2.23) x - (y*, f)(x) := (y*, f(x)),    y*eRm,

be the Lagrange scalarization of f. Then one has

(2.24) D*f(x)(y*) = d-(y*,f)(x)¿0   Vy* e Rm.
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Note that one cannot obtain an analogue of representation (2.24) stated in

terms of the Clarke coderivative (2.6) and generalized gradient (2.16) in the

nonsmooth case. Indeed, D*cf(x)(0) = {0} if and only if / is strictly dif-
ferentiable at x; see Proposition 3.1 and Corollary 3.2. On the other hand,

Proposition 2.8 implies the following connection between the convex hull of

the coderivative (2.5) and (Clarke's) generalized Jacobian Jf(x) c Rmxn of

Lipschitz continuous vector functions. Remind that Jf(x) is defined as the

convex hull of the set of all limiting points for sequences {V f(xk)} where /

is differentiable at xk —► x ; see [4, p. 70].

Corollary 2.9. Let f: R" —► Rm be Lipschitz continuous around x. Then one

has

(2.25) coD*f(x)(y*) = cod~(y*, f)(x) = (Jf(x))*y*   Vy* e Rm.

Proof. This follows from (2.24), (2.16), and the chain rule in Clarke [4, Theo-
rem 2.6.6].   D

Now let us consider a general chain rule for the subdifferential (2.13) of the

composition (tp ° f)(x) := <p(f(x)) of extended-real-valued and vector func-

tions. For the formulation of the next result proved in Mordukhovich [19,

Theorems 4.6 and 4.7], we need the following construction of the singular sub-

differential of <p : Rn —* R at x e dom tp .

Í2 26) d°°<p(x):=D'E9(x,<p(mO)

= {x* el": (x*, 0) e N((x, tp(x))\epi<p)}.

Note that if tp is l.s.c. around x, then d°°<p(x) = {0} if and only if <p is

Lipschitz continuous around this point (see, e.g., [19, Theorem 2.1]).

Proposition 2.10. Let f: R" -+ Rm be continuous around x,  tp: Rm -+ R be

l.s.c. around y = f(x) e dom tp , and let

(2.27) d°°(p(y) n Ker D*f(x) = {0}.

Then one has

(2.28) d-(<pof)(x)c{J[D*f(x)(y*):y*ed-<p(y)}.

Moreover, if f is Lipschitz continuous around x, then  (2.28)  becomes the

equality

(2.29) d-(<p o f)(x) = \J[d~{y*, f)(x):y* e d~<p(y)]

if one of the following conditions holds:

(a) / is strictly differentiable at x and tp is subdifferentially regular at y

which imply the subdifferential regularity of the composition (tp o f) ;

(b) / is strictly differentiable at x and the Jacobian matrix V/(x)  is

quadratic (m-n) and nonsingular;

(c) tp is strictly differentiable at y .

Note that assumption (2.27) is automatically fulfilled if either tp is locally

Lipschitzian around y (as in (c)) or / satisfies (b). Let us consider some corol-

laries of Proposition 2.10 which are important for applications in this paper.
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Corollary 2.11. Let

A := {x e R" : f(x) e A}

where the function f: R" —> Rw is continuous around x, the set A is closed

around the point f(x) e A, and

(2.30) N(f(x)\A) n Ker D*f(x) = {0}.

Then one has the inclusion

(2.31) /V(x|A) c {J[D*f(x)(y*y. y* e N(f(x)\A)].

Moreover, if f is strictly differentiable at x, then (2.31) becomes an equality

with D*f(x)(y*) — (Vf(x))*y* in the following two cases:

(a) the set A is regular at x which implies the regularity of A at f(x) ;

(b) the matrix V/(x) is quadratic and nonsingular which ensures (2.30).

Proof. Taking tp - S(-,A) in Proposition 2.10, one has d~ô(f(x), A) =
N(f(x\A). Therefore, (2.27) is reduced to (2.30) and (2.28) coincides with
(2.31). Equality conditions (a) and (b) in Proposition 2.10 and Corollary 2.11

are the same.   D

Corollary 2.12. Let the sets Qi, f22 c R" be closed, let the function f: Rn ->
R" be strictly differentiable at x e Qi with the Jacobian matrix V/(x) being

quadratic and nonsingular, and let

(2.32) cil=f-\çi2y

Then one has

(2.33) iV(x|Q,) = (Vf(x))*N(f(x)\Q2).
Proof. One can rewrite (2.32) in the equivalent form

ô(x,cii) = S(f(x), Q2) = (S(.,n2)of)(x).

Now using the equality case (b) in Proposition 2.10 for tp = S(-, Q2), we
obtain (2.33) which coincides with (2.29) by virtue of (2.18) and Proposition

2.5(h).   D

To conclude this section, let us consider an extended-real-valued function

<p of two variables (u, v) e Rk xl«. Proposition 2.10 allows us to obtain

a general relationship between the "full' subdifferential d~tp in both variables

and its "partial" subdifferentials with respect to u and v . Remind that the

partial subdifferentials d~q>(U,v) and d~(p(ü,v) are defined, respectively,

as the subdifferentials (2.13) of the functions <p(-, v) at ü and the function

<p(ïi, •) at v. Denote by prud~<p(U, v) and prvd~<p(Ji, v) the corresponding

projections of the set d~(p(u~,v) on R* and Rg .

Corollary 2.13. Let tp: Rk x Rq -> 1 be locally Lipschitzian around (u~,v).

Then one has

(2.34) d~ç>(û, v) x d~(p(û, v) c prud~<p(û, v) x orvd~(p(u, v)

where equality holds when tp  is separable in (u,v), i.e.,  <p(u, v) = <pi(u) +

tp2(v).

Proof. Let us use Proposition 2.10 with the Lipschitzian function tp = <p(u, v)

and the smooth function /: Rk -> Rk x R<? defined by f(u) = (u,v). From

(2.28) one has
d~tp(u, v) c prud~<p(û, v)
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and similar inclusions for d~ç)(û, v). This implies (2.34). If tp is separable

in (u, v), then

d~<p(ü,v) = (d~<pi(ü), d~tp2(v)) = (d-<p(ü,v), d~(p(ü,v))

which ensures equality in (2.34).   D

From the result obtained and Corollary 2.9, one can easily derive the fol-

lowing relationship between the generalized Jacobian J f of any Lipschitzian

vector function / = f(u, v): Rk x Ri -> Rm and the partial Jacobians Juf

and Jvf. Denote by pruJf(U,v) and prvJf(u,v) the projections of the set

Jf(û, v) c Rmk x Rmi on the spaces Rmk and Rm« respectively.

Corollary 2.14. Let f: Rk x R« —> Rm be Lipschitz continuous around (u,v).

Then one has

(2.35) (Juf(ü,v))*y*c(r>ruJf(ü,v)yy*   W e Rw

and the same inclusion with respect to v . Both inclusions are fulfilled as equali-

ties if f is separable in (u,v).

Proof. For any y* e Rm , let us consider the real-valued function tp(u, v) :=

(y*, f(u, v)) and let us use the result in Corollary 2.13 for this function. Em-

ploying (2.34), Corollary 2.9, and two elementary relationships, one has

(Juf(u, v))*y* = cod-(y*, f)(û, v) c co[pr„(y*, /)(«, v)]

c pru[cod-(y*, f)(u, v)] = pru[(Jf(H, v))*y*]

= (pruJf(u,v))*y*   V/eRw

which proves (2.35). The equality case in the assertion proved is obvious.   D

3. Smooth and Lipschitzian properties of multifunctions

In this section we consider some results about smooth and Lipschitzian prop-

erties of general multifunctions important in what follows. We begin with the

concepts of Lipschitzian and strictly smooth manifolds which are slight modi-

fications of Rockafellar's concepts in [35].

A set S c Rq is said to be a Lipschitzian manifold around the point s e S if

it is locally representable as the graph of a Lipschitz continuous vector function

in the following sense: there exist an open neighborhood W of s and a one-to-

one mapping f of W onto an open set in R" x Rm (where « + m = q) such

that / is strictly differentiable at 5 with the nonsingular Jacobian V/(J) and

f(S n W) is the graph of some Lipschitzian function g: U —» Rm where U is

an open set in R". One can see that the integer « in this definition is uniquely

determined by S and s ; this number is called the dimension of 5 around s .

It is obvious that the graph of any function g : R" -* Rm locally Lipschitzian

around x is a Lipschitzian manifold of dimension « around (x, g(x)). A

less obvious example, which is of great interest for applications, is provided by

graphs of maximal monotone multifunctions. Recall that the operator O: R" =^

R" is called positive monotone if

(3.1 ) (xi - x2, yx - y2) > 0   Vxt, x2 and yx e 0(x, ), y2e 0(x2).

If one changes the sign of inequality (3.1), then O is called negative monotone.

We say that O is monotone if it is either positive or negative monotone.  A
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monotone operator O: R" =>• R" is called maximal monotone if its graph in-

cludes graphs of any other monotone operators from R" into itself in the same

direction. The class of maximal monotone operators contains subdifferential

(superdifferential) mappings for convex, concave, and saddle functions; see [32,

§§24, 35] for more details.
It has been proved in Rockafellar [35, Proposition 2.2] that if <ï>: R" =» R"

is maximal monotone, then its graph is a Lipschitzian manifold of dimension «

in R" x Rn around any point (x,y) e gph O. This implies, in particular, that

graphs of subdifferential operators for convex, concave, and saddle functions

are Lipschitzian manifolds. Note also that the class of Lipschitzian manifolds

includes graphs of subdifferential mappings for the strongly subsmooth (lower-

C2) functions which can be locally represented as a maximum of C2 functions

over compact sets; see [35, §2].

A Lipschitzian manifold S is called strictly smooth at s e S if a Lips-

chitz continuous function g in its local representation around s can be chosen

as strictly differentiable at the point x with (x, g(x)) = f(s). We refer to
Rockafellar [35] for equivalent characterizations and more details about strictly

smooth manifolds. The next result follows from [35, Theorem 3.5] due to sim-

ple considerations of linear algebra.

Proposition 3.1. Let O be a multifunction from R" into Rm whose graph is a

Lipschitzian manifold of some dimension q > « around (x,y)e gphO. Then

the graph of <I> is strictly smooth at (x, y) if and only if the Clarke normal cone

to gph<I> is actually a linear subspace of dimension q . It always happens with

q = n if

(3.2) D*c<I>(x,y)(0) = {0}.

Moreover, if gph O is not strictly smooth at (x,y), then for any y* e Rm the

set Dç(î>(x, y)(y*) is either empty or it is an affine subspace in R" of a positive

dimension.

Proof. Let us consider the Clarke normal cone (2.2) to the graph of O at

(x, y). Using Theorem 3.5(b) in Rockafellar [35], one can conclude that this

cone is actually a linear subspace of dimension d > q in W x Rm . Therefore,

taking into account the definition of the Clarke coderivative (2.6), we can find

matrices K e Rdxn and L e Rdxm such that the extended matrix (KL) e Rn+m

has the full rank d < « + m and

(3.3) D*c®(x,y)(y*) = {x* eRn:Kx* = Ly*}   Vy*elffl.

According to [35, Theorem 3.5(c)], the graph of O is a strictly smooth manifold

at (x, y) if and only if the dimension d of the Clarke normal cone above is

exactly q. Assuming (3.2), one immediately has d = n = q and, therefore,

the graph of O is strictly smooth at (x ,y). If the graph of O is not strictly

smooth at (x,y), then rank(AT) = k < « < d and the dimension of set (3.3)

is equal to d - k > 1  for any y* e DomZ)£<I>(x, y).    D

Note that condition (3.2) is sufficient but not necessary for the graph of <I>

being strictly smooth at (x ,y). A simple counterexample is provided by the

graph of the real-valued function x1/3 at (0, 0) e R2.
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Corollary 3.2. Let g: R" —► Rm be a single-valued function locally Lipschitzian

around x. Then g is differentially regular at x if and only if it is strictly

differentiable at this point.

Proof. If g is strictly differentiable at x , then its differential regularity at this

point follows from Proposition 2.5(h). If g is not strictly differentiable at x ,

then according to Proposition 3.1, the set D^g(x)(0) is a linear subspace of a

positive dimension. On the other hand, one has

D*g(x)(0) = d-(0,g)(x) = {0}

by virtue of Proposition 2.8.   D

Based on the result in Corollary 3.2, we can obtain its extension to the case

of multifunctions with Lipschitzian graphs employing a calculus rule for the

normal cones.

Proposition 3.3. Let O: W => Rm be a multifunction whose graph is a Lips-

chitzian manifold around (x,y) e gphO. Then O is differentially regular at

(x, y) if and only if its graph is strictly smooth at this point.

Proof. Because of the graph of O being a Lipschitzian manifold around (x ,y),

one can find a function /: R"+m -> Rn+m strictly differentiable at (x, y) with

det(V/(x, y)) = n + m

and a function g: R" —> Rm Lipschitz continuous around the point û e Rn

with (H, g(u)) - f(x, y) such that

(3.4) gphí) = r1(gphg)

in some neighborhood of (x,y), where f~x exists due to the classical inverse

function theorem. Now considering the normal cones (2.1) to both sets in (3.4)

and employing Corollary 2.12, we obtain the equality

(3.5) N((x, y)|gphO) = (V/(x, y))*N((û, *(ïï))|gph.*).

Taking the convex closure to both parts in (3.5), one has the same equality for

the Clarke normal cones (2.2) to sets (3.4). It follows from (2.5) and (2.6) that

O is differentially regular at (x, y) if and only if

N((x, F)|gpnO) = Nc((x, y)|gph(D).

By virtue of (3.5), the latter is equivalent to

N((u, g(u))\gphg) = Nc((ñ, g(ü))\gphg)

which means that the function g is differentially regular at w. Therefore, the

general case in Proposition 3.3 is reduced to the single-valued case in Corollary

3.2.   D

The results obtained show that the coderivatives (2.5) and (2.6) are dramat-

ically different (in dimensions!) for any multifunctions whose graphs are Lip-

schitzian manifolds around points under consideration. This is related to the

fact that condition (3.2) implies the strict smooth property considered above,
while its analogue in terms of the coderivative (2.6) completely characterizes

the following Lipschitzian behavior of multifunctions.
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The multifunction O: R" =>■ Rm with the closed graph is said to be pseudo-

Lipschitzian around (x ,y) e gph<I> if there exist a neighborhood U of x, a

neighborhood V of y , and a constant / > 0 such that

(3.6) <D(x') n F c <D(x) +/||x'- x||5   for any x, x' e U

where fid" is the unit closed ball. Observe that the pseudo-Lipschitzian

property of O always implies the nonemptiness of the sets O(x) around x ;

this follows from (3.6) when x' = x .
If for every compact set FcT there exist a neighborhood U of x and

a number / > 0 such that (3.6) holds, then the multifunction O is called sub-

Lipschitzian around x e Dom O. Finally, the multifunction O is called locally

Lipschitzian around x e Dom O if there exist a neighborhood U of x and a

number / > 0 such that (3.6) is fulfilled with V = Rm .

Observe that the latter locally Lipschitzian property coincides with the no-

tion of Lipschitzness for multifunctions O : R" => Rm treated as single-valued

mappings from R" into the space of all nonempty compact subsets of Rm with

the Hausdorff metric on this space. Note also that both properties of pseudo-

Lipschitzness, introduced by Aubin [1], and sub-Lipschitzness, introduced by

Rockafellar [34], extend the locally (around x) Lipschitzian behavior to the

case of unbounded multifunctions. If O is single-valued around x, then all

three concepts under consideration are reduced to the classical locally Lipschitz

continuity of vector functions.

Recall the multifunction O is said to be locally bounded around x if there

is a neighborhood U of x such that the set 0(f7) is bounded. The following

assertions can be found in Rockafellar [34, Theorems 2.1 and 2.2].

Proposition 3.4. For any closed-graph multifunction O one has:

(i)   O is sub-Lipschitzian around x if and only if Q> is pseudo-Lipschitzian
around (x, y) for every point y e O(x) ;

(ii)   5> is locally Lipschitzian around x if and only if <t> is locally bounded

and sub-Lipschitzian around this point.

Let us formulate a criterion for the pseudo-Lipschitzian property of multi-

functions on which main results in this paper are based.

Proposition 3.5. Let O: R" => Rm be a multifunction with the closed graph.

Then <t> is pseudo-Lipschitzian around (x,y) if and only if

(3.7) D*<t>(x,y) = {0}.

This result is proved in Mordukhovich [20, Theorem 5.4; 22, Theorem 5.7] by
different ways. In [22, 23], one can find some other criteria for <t> being pseudo-

Lipschitzian around (x, y) and also precise formulae for evaluating the exact

bound of Lipschitz moduli / in (3.6) expressed in terms of the coderivative

(2.5). Using criterion (3.7), we obtain the following effective realization of the

calculus rule in Proposition 2.6.

Corollary 3.6. Let f: Rn -> Rm be a vector function continuous around x and

let d>: R" => Rm be a multifunction of closed graph around (x,y) e gphO.

Then one has

D*(f + <D)(x, f(x) + y)(y*) c D*f(x)(yy*) + £>*<D(x, y)(y*)   Vy* e Rm
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if either f is Lipschitz continuous around x or O is pseudo-Lipschitzian around

(x,y).

Proof. This follows from Propositions 2.6 and 3.5.    D

The next criteria for the sub-Lipschitzian and locally Lipschitzian properties

of multifunctions follow directly from Propositions 3.4 and 3.5.

Corollary 3.7. For any closed-graph multifunction O being sub-Lipschitzian

around x, it is necessary and sufficient that

(3.8) ZTO(x, y)(0) = {0}   for every y e <D(x).

If the multifunction O is locally bounded around x, then condition (3.8) is

necessary and sufficient for O being locally Lipschitzian around this point.

Now employing Proposition 3.4 and Corollary 3.7 to the inverse multifunc-

tion

(3.9) S>-10;):={xeR'I:(x,)>)egph<I>},

one has the following characterizations.

Corollary 3.8. Let O be a closed-graph multifunction and let (x,y) e gph O.

Then:

(i) For the inverse (3.9) to be pseudo-Lipschitzian around (y, x), it is nec-

essary and sufficient that

(3.10) KerD*O(x,y) = {0}.

(ii) For the inverse (3.9) to be sub-Lipschitzian around y, it is necessary

and sufficient that

(3.11) KerD*(x,>0 = {0}   for every x e <t>~x(y).

(Hi) Let, in addition, O ' be locally bounded around y. Then condition

(3.11) is necessary and sufficient for multifunction (3.9) being locally

Lipschitzian around this point.

Proof. This follows from Propositions 3.4 and 3.5 due to the relationship

y* e D*<ï>-X(y, x)(x*) «■ -x* e D*0(x, y)(-y*).   D

Remark 3.9. If one changes criterion (3.10) to

(3.12) Ker££<D(x, y) = {0}

in terms of the Clarke coderivative (2.6), then the condition obtained is suffi-

cient for the pseudo-Lipschitzian property of the inverse mapping O-1 around

(y,x). This version of the inverse mapping theorem has been first proved by

Aubin [1, §3] and Rockafellar [34, §3]. Employing Proposition 3.1, we can ob-

serve that if the graph of O is a Lipschitzian manifold of dimension « around

(x, y), then condition (3.12) is far removed from the necessity of O-1 being

pseudo-Lipschitzian: it actually implies not only the pseudo-Lipschitzian but

also smoothness property of the inverse mapping.

Remark 3.10. It is well known that the pseudo-Lipschitzian property of the

inverse operator (3.9) is equivalent to the metric regularity and openness (at a

linear rate) property of the multifunction O itself; see [3, 22, 25]. Therefore,
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(3.10) provides a criterion for the mentioned properties of any closed-graph

multifunction. We refer to the article [22] for more details about this and

related topics.
The next useful result about the pseudo-Lipschitzian property of the composi-

tion of two Lipschitzian multifunctions follows from Rockafellar [34, Theorem

4.1].

Proposition 3.11. Let the multifunction O: R" => Rm be given by

O(x) = O,(O0(x)) := \J[<t>i(u): « 6 <D0(x)]

where On: R" => Rk and Oi : Rk => Rm are multifunctions of closed graph. For

given (x ,y) e gph <I>, we assume that i>n is locally Lipschitzian around x and

4>i is pseudo-Lipschitzian around any (u,y) with u e On(x) n Oj~'(y). Then

the graph of d> is closed and O is pseudo-Lipschitzian around (x,y).

Now let us consider again a class of monotone operators O: R" =>• R". As

we mentioned above, the graph of any such O is a Lipschitzian manifold

around any point (x,y) e gph<J>. Moreover, it turns out that if O is pseudo-

Lipschitzian around (x,y), then this multifunction is actually single-valued

around x . The proof of the following assertion can be found in Dontchev and

Hager [6, Proposition 5.1].

Proposition 3.12. Let O be a monotone multifunction which is pseudo-Lipschitz-

ian around (x,y). Then d> is single-valued (and Lipschitz continuous) in a

neighborhood of x.

Consider some applications of results obtained in Propositions 3.1, 3.5, and

3.12 to the case subdifferential mappings for convex functions.

Corollary 3.13. Let tp: R" —» R be a closed proper convex function with the

subdifferential dtp in the sense of convex analysis and let d2*~tp(x, y) be its

second order subdifferential (2.14) at x e domtp relative to some y e dtp(x).

Then the condition

(3.13) d2'-<p(x,y)(0) = {0}

is necessary and sufficient for the function tp being continuously differentiable

in some neighborhood of x with the gradient mapping Vtp : R" —> R" being

Lipschitz continuous around x.

Proof. According to definition (2.14), the second order condition (3.13) is equiv-

alent to (3.7) for the subdifferential multifunction <S> = dtp . Using Proposition

3.5, we conclude that (3.13) is a criterion for dtp being pseudo-Lipschitzian

around (x, y). Now employing Corollary 3.13, one can see that (3.13) is ac-

tually a criterion for the single-valuedness and Lipschitz continuity of dtp in

some neighborhood of x where dtp = Vtp .   D

Corollary 3.14. Let tp: R" —> R be a closed proper convex function and let

dç'~tp(x ,y) be its Clarke second order subdifferential (2.17). Then the condi-

tion

(3.14) d2'-tp(x,y)(0) = {0}
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implies that there exists a neighborhood of x on which tp enjoys the following

(classical) twice differentiability property: tp is continuously differentiable and

its gradient mapping Vtp is strictly differentiable at x.

Proof. Condition (3.14) implies (3.13) and, due to the previous assertion, it en-

sures that <p is continuously differentiable around x. On the other hand, (3.14)

coincides with (3.2) for the multifunction <P = dtp . By virtue of Proposition

3.1, this condition implies that the gradient mapping \Jtp = dtp is strictly differ-

entiable at x which means the .twice differentiability property of the function

tp.   D

Remark 3.15. Condition (3.14) ensures that the Clarke normal cone to the graph

of dtp at (x, y) is a linear subspace of dimension « in R2" . The latter is in

general equivalent to the graph of dtp being strictly smooth at (x,y); see

Proposition 3.1. According to Rockafellar [35, §4], this property always implies

that tp must be in fact twice differentiable in the sense of having a second order

Taylor expansion at the point in question. The observation made excludes the

possibility of using the Clarke normal cone in sensitivity analysis of variational

inequalities and complementarity problems where tp is the indicator function

of a convex set; see [34, Remark 3.13] and Remark 4.9 for more details.

4. Linear generalized equations

We begin this section with studying linear perturbed generalized equations

of the form

(4.1) QeAz + p + Q(z)

where z eR" is a solution vector (decision variable), p e Rm is a parameter,

A e Rmxn is a fixed constant matrix, and Q: R" => Rm is an arbitrary multi-

function of closed graph containing the point (0,0). Such linear generalized

equations have some important applications (in particular, they arise naturally

from optimality conditions for quadratic programming; see, e.g., [30]). More-

over, they can be treated as an appropriate approximation (linearization) of

nonlinear generalized equations in a broad setting; see §5. In this way, the
results obtained for linear generalized equations play a basic role for studying

nonlinear generalized equations via such an approximation.

Let us consider the set of solutions

(4.2) r(p):={zeR":0eAz+p + Q(z)}

to the generalized equation (4.1 ) and let us study the dependence of the solu-

tion map T on the parameter p . We are going to concentrate on the pseudo-

Lipschitzian property of Y around (0, 0) which ensures, in particular, that sets

(4.2) are nonempty for all p around 0.

Now we obtain a necessary and sufficient condition for the multifunction

F: Rm => R" in (4.2) being pseudo-Lipschitzian around (0,0). For this pur-

pose, let us introduce the adjoint generalized equation

(4.3) 0eA*y* + D*Q(0,0)(y*)   for.y*eRm

to (4.1) at (0, 0) in terms of the adjoint (transposed) matrix A* to A and the

coderivative (adjoint mapping) (2.5) to Q at (0,0). We say that the adjoint

equation (4.3) has only the trivial solution if

(4.4) [0 G A*y* + D*Q(0, 0)(y*)] => y* = 0.
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Theorem 4.1. For the solution map (4.2) to the linear generalized equation (4.1 )

being pseudo-Lipschitzian around (0,0), it is necessary and sufficient that the

adjoint generalized equation (4.2) have only the trivial solution.

Proof. Let us consider the multivalued operator

(4.5) L(z):=Az + Q(z)

and its inverse L~x : Rm => R". It is obvious that the values of the inverse

multifunction to (4.5) can be represented in the form

L-x(y) = {zeRn: 0 e Az - y + Q(z)},

i.e., L~x(-p) coincides with T(p) in (4.2). Therefore, the pseudo-Lipschitzness

of the solution map (4.2) around (0, 0) is equivalent to the multifunction L

in (4.5) having the pseudo-Lipschitzian inverse around this point. According to

Corollary 3.8(i), the latter property holds if and only if

(4.6) [0eD*L(0,0)(y*)]^y* = 0.

Using Corollary 2.7 for the coderivative of the sum in (4.5), one can conclude

that (4.6) is equivalent to (4.4). This ends the proof of the theorem.   D

Now let us obtain effective representations of the Lipschitz stability criterion

in Theorem 4.1 for some special classes of multifunctions Q in the perturbed

generalized equation (4.1).

Corollary 4.2. Let the multifunction Q in (4.1 ) have the convex graph. Then

the solution map (4.2) is pseudo-Lipschitzian around (0,0) if and only if

(4.1) Oeint(ImL)

for the operator L in (4.5).

Proof. Using Proposition 2.5(i) for the representation of the coderivative

D*Q(0, 0)(y*) of the convex-graph multifunction Q, one can reduce (4.4) to

(4.8) [{A*y* ,z) + (y*,y)>0 V(z, y) e gph Q] => y* = 0.

Let us consider the expression in the brackets of (4.8). Because (A*y*, z) =

(y*, Az), this expression means that u — 0 is an optimal solution to the convex

minimization problem

minimize (y*, u) subject to u e Im L.

Using a well-known necessary and sufficient optimality condition for this prob-

lem, we can see that criterion (4.8) is equivalent to

[-y* eN(0\lmL)]=*y* = 0.

The latter holds if and only if condition (4.7) is fulfilled.   D

Note that (4.7) is the interiority condition in the Robinson-Ursescu theorem

for the operator L in (4.5); cf. [2, §2.2]. Let us consider a special case of

Corollary 4.2 when

, E   for z e Q.,
(4.9) Q(z) = '

0    otherwise

with E c Wn and Q c R". Denote AQ. := {y e Rm : y = Az for z e Q}.
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Corollary 4.3. Let the multifunction Q in (4.1) have form (4.9) where the sets

E and Q are closed and convex. Then the solution map (4.2) to (4.1), (4.9)

is pseudo-Lipschitzian around (0, 0) if and only if

(4.10) 0eint(AQ + E).

Proof. One can see that the multifunction Q in (4.9) has convex graph and

condition (4.10) is equivalent to (4.7) for this Q. Therefore, Corollary 4.3

follows directly from Corollary 4.2.   D

Now let us consider the case when the multifunction Q in (4.1 ) is represented

in the form

(4.11) Q(z):={yeRm: 6(z, y) e A}

where A c Rq is a closed set and where 8 : Rn x Rm -> Ri is an arbitrary vector

function with 0(0, 0) e A.

Corollary 4.4. Let the function 8 in (4.11) be continuous around (0,0). Then

the condition

,4 ,2) [(A*y*,y*) e D*d(0,0)(w*)&w* e N(8(0, 0)|A)]

is sufficient for the solution map (4.2) to (4.1), (4.11) being pseudo-Lipschitzian

around (0,0). Moreover, if 8 is strictly differentiable at (0,0), then the con-

dition

(4 13) [(Vvö(°' °)A - V-ö(0' °))*w* = 0&w* e NW°> °)IA)]

( '    ' ^(Vyo(0,0))*w* = 0

is necessary and sufficient for (4.2) being pseudo-Lipschitzian around (0, 0)

when either
(a) V0(O, 0) is quadratic (q = n + m) and nonsingular, or

(b) A ¿s regular at 8(0, 0) and

(4.14) Ker(V0(O, 0))* n/V(0(O, 0)|A) = {0}.

Proof. According to the definition of the coderivative, one can represent crite-

rion (4.4) for multifunction (4.11) in the form

(4.15) [(A*y*, y*) e N((0, 0)|A)] => y* = 0

where A := {(z, y) e Rn+m: 6(z, y) e A}. Let us obtain a representation of

the normal cone in (4.15) using Corollary 2.11. Due to this result, one has that

criterion (4.15) is fulfilled if the following two conditions hold:

(4.16) [(A*y*) e D*6(0, 0)(w*) &w* e N(9(0, 0)|A)] =► y*,

(4.17) KerD*9(0, 0) n N(9(0, 0)|A) = {0}.

Moreover, if 8 is strictly differentiable at (0, 0) and (4.14) is fulfilled, then,
according to Corollary 2.11, criterion (4.15) is equivalent to (4.13) in cases (a) or

(b) of the assertion being proved. To finish the proof of this result, we observe

that (4.12) holds in the general nonsmooth setting if and only if (4.16) and

(4.17) are fulfilled simultaneously.   D

Corollary 4.5. Let 8 beLipschitz continuous around (0, 0). Then the condition

(4.18) [(A*y*, y*) e d~(w*, 0)(O, 0)&w* e N(8(0, 0)|A)] => w* = 0
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ensures the pseudo-Lipschitzness of the solution map (4.2) to (4.1), (4.11)

around (0,0). This condition is automatically fulfilled if

(4.19) [(A*y*,y*) e (J8(0, 0))*w*&w* e N(8(0, 0)|A)] => w* = 0

in terms of the generalized Jacobian J8(0, 0) c R<?('!+'").

Proof. If 8 is Lipschitz continuous around (0,0), then (4.18) is equivalent

to (4.12) by virtue of Proposition 2.8. Furthermore, condition (4.18) is always

implied by (4.19) due to Corollary 2.9.    D

Corollary 4.6. Let 8 be strictly differentiable at (0,0). Then the condition

(4.20) [(Vy8(0, 0)A - VZ0(O, 0))*w* = O&w* e N(8(0, 0)|A)] => w* = 0

is sufficient for the solution map (4.2) to (4.1), (4.11) being pseudo-Lipschitzian

around (0,0). This condition is necessary and sufficient for the pseudo-Lipschitz-

ian property of (4.2) if rank(VJ,o(0, 0)) = q < m and A is regular at (0,0).

Proof. The sufficiency part follows directly from (4.12). If rank(Vy0(O, 0)) =
q, then (4.13) is equivalent to (4.20) and (4.14) is fulfilled automatically. One
can employ part (b) in Corollary 4.4.   D

Let us consider a special case of (4.1) when Q is represented in the classical

form of inequality and equality constraints:

21) Ö(Z) := {y 6 K'": dl{z'y) - ° f0r ' = l ' •■■ ' r and

9i(z,y) = 0fori = r+l,...,q}

with smooth real-valued functions 0,. Let 8 = (0,-),

for i = I, ... , q; j =1, ... ,n; k = I, ... , m,

and let c, (i: = 1, ... , q) be vector columns of the matrix

(4.23) C := V,,0(0, 0)A - VZ0(O, 0).

The next assertion ensures the pseudo-Lipschitzian behavior of the solu-

tion map to (4.1), (4.21) under a generalized constraint qualification of the

Mangasarian-Fromovitz type; cf. [27].

Corollary 4.7. Let the multifunction Q be represented in form (4.21) where 8¡

are strictly differentiable at (0,0). Then the constraint qualification condition

[XiCi + X2c2 H-h Xqcq = 0] => À,■ = 0   for i=l,... ,q

if A, > 0 and A/0/(O, 0) = 0   fori=l,...,r

with C in (4.23) is sufficient for the solution map (4.2) to (4.1), (4.21) being
pseudo-Lipschitzian around (0, 0). This condition is necessary and sufficient for

the pseudo-Lipschitzness of (4.2) when the vectors Vy0i (0, 0), ... , Vy8q(0, 0)

are linearly independent.

Proof. It is obvious that (4.21) is a special case of (4.11) with 8 = (8X, ... , 8q)

and with the regular (convex) set

A := {(wi,... , wq) e R* : w, < 0 for i = 1,..., r and

w¡i = 0 for i = r+ 1,..., q).
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One can easily compute the normal cone to (4.24) in the form

N(8(0,0)\A) = {w* = (Xi, ... ,l5)el«:l,>0

and 1,8,(0, 0) = 0 for i = 1, ... , r}.

Therefore, the results being proved for case (4.21) follow directly from Corollary

4.6.   D

Now we consider the setting when the multifunction Q in (4.1) is a subdifi

ferential mapping for some extended-real-values function tp: Rn —► R, i.e.,

(4.25) Q(Z):={d'm   lf^(z)l<00'

t 0 otherwise

in terms of the subdifferential (2.13). This includes, in particular, the cases of

variational inequalities and complementarity problems when tp(z) — 5(z, Q)

is the indicator function of some convex set Q. ; see § 1. Theorem 4.1 implies the

following criterion of the Lipschitzian stability for such generalized equations

stated in terms of the second order subdifferential (2.14).

Corollary 4.8. Let the multifunction Q be represented in the subdifferential form

(4.25). Then the condition

(4.26) [0 6 A*y* + d2>~tp(0, 0)(y*)} =» y* = 0

is necessary and sufficient for the solution map (4.2) to (4.1), (4.25) being

pseudo-Lipschitzian around (0,0).

Proof. Note that the set-valued mapping (4.25) has closed graph for any

extended-real-valued function tp, due to the robustness property of the sub-

differential (2.13); see Remark 2.4. For such multifunctions Q, conditions

(4.4) and (4.26) are equivalent by virtue of Definition (2.14). Therefore, the

assertion being proved follows from Theorem 4.1.   D

Remark 4.9. If one replaces the coderivative (2.5) in (4.4) by the Clarke coderiv-

ative (2.6), then the condition obtained

(4.27) [0 e A*y* + D*cQ(0, 0)(y*)] => y* = 0

is reduced to Rockafellar's sufficient condition for (4.2) being pseudo-

Lipschitzian around (0,0); cf. [34, Corollary 3.12]. In particular, if Q is the

subdifferential mapping for a convex function tp , then the Clarke coderivative

in (4.27) is reduced to (2.17) and coincides with the second order derivative of

tp employed by Aubin [1] in his applications to sensitivity analysis of convex

minimization problems.

It turns out that the sufficient condition (4.27) is much more restrictive than

criterion (4.4) and does not hold for a broad class of generalized equations

important for applications. In particular, if m = « and the graph of Q happens

to be a Lipschitzian manifold of dimension « around (0, 0) (this is always

the case when (4.1) is a variational inequality), then the Clarke normal cone

Nc((0, 0)|gphg) is always a linear subspace S having dimension at least n ;

see Proposition 3.1 above summarizing results in Rockafellar [35]. But in this

setting the sufficient condition (4.27) easily implies that dimension of S is

exactly n and the graph of Q must be strictly smooth at (0,0); see again

Proposition 3.1 and also [34, Remark 3.13]. Moreover, if Q = dtp with a closed
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proper convex function on R" , then the latter property corresponds to some

second order differentiability of tp which is very close to the classical contents;

see [35, §4] for more details. Therefore, condition (4.27) stated in terms of the

Clarke normal case cannot actually cover the case of variational inequalities and

complementarity problems where tp is the indicator function of some convex

set. In contrast to this, criterion (4.26) does not require any special properties

of tp and allows us to provide an effective sensitivity analysis of the problems

under consideration. Now consider a typical example of employing criterion

(4.26) in the framework of perturbed variational inequalities.

Example 4.10. Considering the following perturbed variational inequality

(4.28) find z > 0 s.t. (az + p){to-z) >0   forall<y>0,

we can see that (4.28) is equivalent to the linear generalized equation (4.1) with

z e R, A = a, and

í 0      ifz>0,

(4.29) Q(z) = dtp(z) = \ R_    ifz = 0,

I 0      if z < 0

for the indicator convex function tp(z) := S(z, Q) with Q := R+. Let us

compute

D*Q(0, 0)(u) = {veR:(v, -u) e N((0, 0)|gphQ)}

for the multifunction Q in (4.29) with nonconvex graph

gphß = {(z,j;)eR2:z>0, y<0&zy = 0}.

One easily has that N((0, 0)|gphß) = {(v , u) e R2: v < 0,  u > 0} and

{0 if u > 0,

R ifw = 0,

R-    if u < 0.

Putting the result to the adjoint generalized equation (4.3) for (4.28), we can

conclude that this equation has only the trivial solution if and only if a > 0.

According to Theorem 4.1 (or Corollary 4.8), the condition obtained is necessary

and sufficient for the pseudo-Lipschitzness of the solution map to perturbed

variational inequality (4.28) at (0,0). Note that

7V((0,0)|gphö) = R2    and   D*Q(0, 0)(u) = R

for Q in (4.29), i.e., condition (4.27) carries no information about the Lip-

schitzian stability of (4.28).

Now let us consider the following class of linear generalized equations with

nonlinear additive parameters:

(4.30) 0 e Az + h(p) + Q(z)

where A and Q are the same as in (4.1) and «: Rk -» Rm is a continuous

vector function of the parameter p such that «(0) = 0. The corresponding set

of solutions to (4.30) is

(4.31) I(p) :={zeR":0eAz + h(p) + Q(z)}.
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We study the pseudo-Lipschitzian behavior of the solution map (4.31) around

the points (p, 0) with

peP:=h-[(0) = {peRk: h(p) = 0}.

Note that such points satisfy (4.30).

Theorem 4.11. (i) If the function h is locally Lipschitzian around some p e

P, then condition (4.4) is sufficient for (4.31) being pseudo-Lipschitzian around

(p, 0). Conversely if the inverse multifunction «_1 is locally bounded around 0

and

(4.32) KerD*h(p) = {0}   Mp e P,

then condition (4.4) is necessary for (4.31) being pseudo-Lipschitzian around any

(p, 0) with p eP.
(ii) If « is Lipschitz continuous around p = 0 and its inverse admits a single-

valued Lipschitz continuous selection y(v) e h~x(v) with y(0) = 0 in some

neighborhood of v = 0 (in particular, h is a locally Lipschitzian homeomor-

phism around 0), then condition (4.4) is necessary and sufficient for (4.31) being

pseudo-Lipschitzian around (0,0).

Proof. Let us prove (i). Along with (4.30), we consider the original general-

ized equation (4.1) with the linear parameter v = p. One can observe the

interrelation

2Z(p) = T(h(p))

between the solution map (4.31) to (4.30) and the solution map (4.2) to (4.1)

with the parameter v . If the function « is locally Lipschitz around some point

p e P and Y is pseudo-Lipschitzian around (0,0), then the multifunction

X will be pseudo-Lipschitzian around (p, 0) according to Proposition 3.11

with a single-valued and Lipschitz continuous internal function. Therefore,

criterion (4.4), ensuring the pseudo-Lipschitzness of the multifunction (4.2)

around (0, 0) by virtue of Theorem 4.1, provides a sufficient condition for the

pseudo-Lipschitzness of the solution map (4.31).
Let us prove the necessity part in assertion (i) of the theorem. If condition

(4.32) is fulfilled and the inverse mapping h~x is locally bounded around 0,

then this multifunction will be nonempty-compact-valued and Lipschitzian in

some neighborhood of 0 by virtue of Corollary 3.8(iii). In this setting we have

the representation

T(i;) = !(«-»)

around v = 0 and can employ Proposition 3.11 for the case of locally Lip-

schitzian internal multifunction. According to this proposition, the pseudo-

Lipschitzness of I around any (p, 0) with p e P and the locally Lipschitzness

of «"' around 0 imply the pseudo-Lipschitzness of T in (4.2) around (0,0).

Due to Theorem 4.1, the latter means that condition (4.4) must be fulfilled.

Now we prove (ii). The sufficiency part in (ii) follows from (i) as p = 0.

For proving the necessity in (ii), let us consider a neighborhood U of p = 0

where the solution map (4.31) satisfies the pseudo-Lipschitzian property around

(0,0). Taking the Lipschitzian selection y of h~x , one can find neighborhood

V of v = 0 such that y(V) C U and

T(v) = l(y(v))    forweF.
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Employing Proposition 3.11, again we conclude that T in (4.2) is a pseudo-

Lipschitzian multifunction around (0,0). Therefore, condition (4.4) is ful-

filled. This ends the proof of the theorem.   □

Remark 4.12. One can see that the two assertions in Theorem 4.11 are indepen-

dent even in the case when P — {0}. Indeed, in this case the condition (4.32)

is equivalent to the multifunction h~x being Lipschitz continuous around 0 in

the Hausdorff metric. But this does not imply the existence of a locally Lips-

chitzian selection (see, e.g., [2, §9.4]). Conversely, simple examples show that

the existence of a Lipschitzian selection does not ensure the Lipschitzian or

pseudo-Lipschitzian properties of multifunctions. Both assertions in Theorem

4.11 are equivalent if « is a locally Lipschitzian homeomorphism around 0.

Note that a necessary and sufficient condition for the latter property has been

recently found by Kummer [14] in terms of Thibault's generalized directional

derivative of « [38]. This condition implies (4.32) as p = 0.

Due to Proposition 2.8, one can reduce (4.32) to

[0ed-(y*,h)(p)]^y*   Vp eP

when « is Lipschitz continuous around p e P. The latter condition holds

automatically if every matrix belonging to the generalized Jacobian Jh(p) has

maximal rank, i.e.,

(4.33) rank(/«(p)) = m<k   V/> eP.

For m = k in (4.33), we obtain the following concretization of Theorem 4.11.

Corollary 4.13. Let h: Rk —> R^ be Lipschitz continuous around p = 0 and

let every matrix belonging to the generalized Jacobian Jh(0) be nonsingular.

Then condition (4.4) is necessary and sufficient for the solution map (4.31) to

be pseudo-Lipschitzian around (0,0).

Proof. If (4.33) is fulfilled for p — 0 with m = k, then, according to the
inverse function theorem of Clarke [4, Theorem 7.1.1], the Lipschitz continuous

function « admits a single-valued and locally Lipschitzian inverse around 0. We

meet all the assumptions in both assertions of Theorem 4.11.   D

According to Corollaries 4.2-4.8, the results obtained imply various suffi-

cient conditions as well as necessary and sufficient conditions for the pseudo-

Lipschitzian property of the solution map (4.31) in the cases of special repre-

sentations of the multifunction Q.

5. Nonlinear smooth generalized equations

In this section we study the nonlinear perturbed generalized equations

(5.1) 0 e f(p, z) + Q(z)

depending on a parameter p e Rk where /: l* x 1" —> Rm is smooth in

the decision variable z. In what follows we assume that Q : R" => Rm is an

arbitrary multifunction of closed graph, the function / is continuous around

the given point (p, z) and -f(p, z) e Q(~z). Let us consider the solution map

(5.2) l(p):={zeRn:0ef(p,z) + Q(z)}
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and study the pseudo-Lipschitzian property of (5.2) around the point (p, z)

satisfying (5.1). Following Robinson [28, 29], we define the linear generalized

equation

(5.3) Oef(p,z-) + Vzf(p, z-)(z -z)-y + Q(z)

depending on a linear parameter y eRm and call (5.3) the linearization of (5.1)

at the point (p, z). One can see that the set of solutions

(5.4) Y(y) := {z e R": 0 e f(p, z) + Vzf(p, J)(z -z)-y + Q(z)}

to the linearized equation (5.3) coincides with the value L~x(y) of the inverse

multifunction to the operator

(5.5) L(z) := f(p, z) + Vzf(p, l>)(z - z) + Q(z).

Some relationships between Lipschitzian properties of the solution maps (5.2)

and (5.4) have been studied in [6, 28, 29]. In [28], Robinson obtained condi-
tions under which the so-called upper Lipschitzian property of (5.4) implies the

same property of the solution map (5.2). Another paper of Robinson [29] con-

tains conditions ensuring the single-valuedness and locally Lipschitzness of (5.2)

provided that the solution map to the linearized equation enjoys these proper-

ties. In the recent paper [6], Dontchev and Hager have proved, employing a

contractive mapping principle for multifunctions, that the pseudo-Lipschitzian

property of the solution map (5.4) induces such a property for (5.2) in general

settings. This allows us to obtain effective sufficient conditions for (5.2) to be

pseudo-Lipschitzian using the pseudo-Lipschitzian criteria for linear generalized

equations in §4.

In the following theorem we assume that / is strictly differentiable in z at

(JJ, z), i.e.,

f(p,z)-f(p,z')-Vzf(p,z-)(z-z')-\

\\z-z'\\ \       ■
p^p

It happens, in particular, when / is differentiable in z around (p, z) and

Vz/ is continuous in both p and z at this point. Recall also that / is said

to be locally Lipschitzian in p uniformly in z around (p, z) if there exist a

number / > 0 and neighborhoods U of p and V of z such that

||/(P)Z)-/(P',Z)||</||P-/7'||

for any p, p' e U, and z e V .

Theorem 5.1. Let f be strictly differentiable in z at (p,z) and let it be locally

Lipschitzian in p uniformly in z around this point. Then the solution map

(4.2) is pseudo-Lipschitzian around (p,z) if the adjoint generalized equation

(5.6) 0 e (Vzf(p, z))V + D*Q(z, -f(p, z))(y*)

has only the trivial solution y* = 0.

Proof. It follows from [6, Theorem 4.1] that, under the assumptions imposed

on /, the pseudo-Lipschitzness of multifunction (5.4) around (0, z) implies

the pseudo-Lipschitzness of the solution map (5.2) around (p, z). Employing

lim_
z, z'—>z
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Theorem 4.1 and using an elementary representation of the coderivative (2.5)

for the multifunction

0(z):=/(p,z) + Q(x + z)

at (0,0), one can easily conclude that the condition

(5.7) [0 6 (Vzf(p, z))*y* + D*Q(z, -f(p, z))(y*)] ̂ y*=0

is necessary and sufficient for (5.4) being pseudo-Lipschitzian around (0, z).

Therefore, (5.7) provides a sufficient condition for the pseudo-Lipschitzness of

the solution map (5.2) around (p, z).   D

Now we obtain some corollaries of Theorem 4.1 based on Corollaries 4.2-4.8

of Theorem 4.1 for the linearized equation (5.3).

Corollary 5.2. Let f satisfy the assumptions in Theorem 5.1 and let Q in (5.1)

have convex graph. If condition (4.7) is fulfilled for the operator L in (5.5),

then the solution map (5.2) is pseudo-Lipschitzian around (J>,~z).

Proof. This follows from Theorem 5.1 by virtue of Corollary 4.2 for the lin-

earized operator L in (5.5).   D

Corollary 5.3. Let f satisfy the assumptions in Theorem 5.1 and let Q be

represented in form (4.9) with some closed and convex sets E and Q. Then

the condition

(5.8) 0 e int{/(p, z) + Vzf(p, z)(Q - z) + E}

is sufficient for the solution map (5.2) to (5.1), (4.9) to be pseudo-Lipschitzian

around (p, z).

Proof. This follows from Theorem 5.1 due to Corollary 5.3 for the linear gen-

eralized equation (5.3).   D

Note that (5.8) is the Robinson regularity condition first introduced and uti-

lized in [27] for the case of E being a convex cone.

Corollary 5.4. Let f satisfy the assumptions in Theorem 5.1 and let Q admit

representation (4.11 ) where AgR« is a closed set and 8 : R" x Rm —> R9 is a

vector function continuous around the point (z, -f(p, z)) with 8(1, -f(p, z))

e A. Then:

(i)  The condition

[((Vz/(p, z))*y*, y*) e D*8(z, -f(p, z))(w*)&

[ ' ] w* e N(8(x, -f(jj, z))|A)] => w* = O&y* = 0

is sufficient of the solution map (5.2) to (5.1),  (4.11)  to be pseudo-

Lipschitzian around (p, z).

(ii) If 8 is Lipschitz continuous around (z, -f(p, z)), then the sufficient

condition (5.9) is equivalent to

,   Q) [((vz/(p, z))V, y*) e d-(W, 0)(z, -f(p, z))&

w*eN(8(z-,-f(p,1))\A)\^w* =0

which is automatically fulfilled when

K(V,/(p, z))V, y*) g (/0(z, -f(J>, 1)))*w*8l

('    ' w*eN(d(-z,-f(J>,z))\A)}^w* = 0

in terms of the generalized Jacobian of 8 at (z, -f(p, z)).
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(hi) If 6 is strictly differentiable at (z, -f(p, z)), then the sufficient condi-

tion (5.10) is equivalent to

j w*eJV(0(z,-/(p,z))|A)]^u;* = O

which is automatically fulfilled when

rank(Vv0(z, -f(p, z))Vz/(p, z) - Vz0(z, -/(p, z))) = <?.

Proof. Assertion (i) follows from Theorem 5.1 and the sufficiency part in Corol-

lary 4.4 for (5.3). Assertions (ii) and (hi) follow from Propositions 2.6 and

2.5(h) respectively.   D

Let us obtain a specification of assertion (hi) in Corollary 5.4 for the classical

representation (4.21) of the multifunction Q in (5.1). Using notation (4.22),

we consider the matrix

(5.13) C := Vy0(z, -f(p, z))Vzf(p, z) - Vz0(z, -f(p, z))

and denote by c,   (i = 1,... , q) its vector columns.

Corollary 5.5. Let f satisfy the assumptions in Theorem 5.1 and let Q ad-

mit representation (4.21) with real-valued functions 0, strictly differentiable at

(z, -f(p, z)). Then the condition

(5 14) [¿ici+/l2c2 + --- +V<? = 0]=^ A, = 0   fori=l,...,q

if h > 0 and Xt6i{z, -f(p, z)) = 0  fori = \,...,r

with the matrix C in (5.13) is sufficient for the solution map (5.2) to (5.1),

(4.21) to be pseudo-Lipschitzian around (p,z).

Proof. This follows from assertion (hi) in Corollary 5.4 for A as in (4.24).   D

Corollary 5.6. Let f satisfy the assumptions in Theorem 5.1 and let Q be the

subdifferential mapping (4.25) with an extended-real-valued function tp . Then

the condition

(5.15) [0 e (Vzf(J>, z)) V + d2'~tp(z-, -f(p, z))(y*)] => y* = 0

is sufficient for the solution map (5.2) to (5.1), (4.25) to be pseudo-Lipschitzian

around (p, z).

Proof. This follows from Theorem 5.1 and Corollary 4.8 for (5.3).   D

Remark 5.7. The sufficient condition in Theorem 5.1 for the solution map (5.2)

to be pseudo-Lipschitzian around (p, z) has been obtained in Mordukhovich

[23, Theorem 5.8] under the assumption that / is strictly differentiable at

(p, z) with respect to both variables (p, z). This was proved by reducing

the generalized equation (5.1) to a general constraint system in [23] without

reference to the linearized equation (5.3). Using the procedure in this section,

we remove the smoothness assumption for / with respect to p in the sufficient

condition (5.7). On the other hand, the approach in [23] allows us to single out

general settings when (5.7) is a necessary and sufficient condition for the pseudo-

Lipschitzness of (5.2) while / is smooth in (p, z). If / may be nonsmooth

in p but it is separated with respect to (p, z), i.e.,

(5.16) f(p,z) = b(z) + h(p),
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then another setting when (5.7) is a necessary and sufficient condition for the

pseudo-Lipschitzness of (5.2) can be obtained by using the procedure in the

proof of Theorem 4.11. The next theorem summarizes all the results in this

direction.

Theorem 5.8. (i) Condition (5.7) is necessary and sufficient for the solution map

(5.2) to the generalized equation (5.1) to be pseudo-Lipschitzian around (p, z)

if one of the following groups of assumptions (H1)-(H3) holds:

(HI)   / is strictly differentiable in (p, z) at the point (p,z~) and the matrix

Vp/(p, z) is quadratic and nonsingular, i.e., rank(Vp/(p, z)) = m =

k;
(H2)   / is strictly differentiable in (p, z) at (p, z), rank(Vp/(p, z)) = m <

k, and Q is differentially regular at (z, -f(p, z)) ;

(H3) f is represented in the form (5.16) where b is strictly differentiable at z

while h is Lipschitz continuous around p and its inverse h~x admits a

single-valued Lipschitz continuous selection around h(p) passing through

(h(P~),P~) (in particular, h is a locally Lipschitzian homeomorphism

around p).

(ii) Suppose that the following hypothesis is fulfilled:

(H4) / admits representation (5.16) where b is strictly differentiable at z,

« is Lipschitz continuous around any point p with h(p) — h(p), the in-

verse multifunction h~x is locally bounded around h(p) and assumption

(4.32) holds with

P := h~{(h(p)) = {peRk: h(p) = h(p)}.

Then condition (5.7) is necessary and sufficient for the solution map (5.2) to be

pseudo-Lipschitzian around any point (p, z) with p e P.

Proof. Assertion (i) under hypotheses (HI) and (H2) follows directly from [23,
Theorem 5.8]. The sufficiency parts in (i) and (ii) in the case of representation

(5.16) are implied by Theorem 5.1. For proving the necessity of (5.7) for the

pseudo-Lipschitzness of (5.2) under hypotheses (H3) and (H4), let us consider

the generalized equation

(5.17) 0 e b(z) + v + Q(z)

with the linear additive parameter v e Rm . One can observe that the function

f(z, v) := b(z) + v satisfies (HI) at the point (h(p), z). Therefore, condition

(5.7) is necessary and sufficient for the pseudo-Lipschitzian property of the

solution map to (5.17) at (h(p), z). Now using the same arguments as in the

proof of Theorem 4.11, we conclude that (5.7) is a necessary condition for the

pseudo-Lipschitzian property of (5.2) around the corresponding points under

assumptions (H3) and (H4) respectively.   G

The results obtained allow us to establish the equivalence between the pseudo-

Lipschitzness of the solution maps to the nonlinear generalized equation (5.1)

and its linearization (5.3) under the assumptions in Theorem 5.8.

Corollary 5.9. (i) Let one of the assumption groups (H1)-(H3) be fulfilled. Then
the solution map (5.2) to the nonlinear generalized equation (5.1) is pseudo-

Lipschitzian around (p, z) if and only if the solution map (5.4) to the linearized

equation (5.3) is pseudo-Lipschitzian around (0, z).
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(ii) Let (H4) be fulfilled. Then for the pseudo-Lipschitzian property of the
solution map (5.2) to (5.2), (5.16) around any point (p, z) with h(p) — h(p), it

is necessary and sufficient that the solution map to the linearized equation (5.3),

(5.16) be pseudo-Lipschitzian around (0, z).

Proof. This follows from Theorems 5.8, 4.1, and 4.11 which provide the same

criteria for the pseudo-Lipschitzness of the solution maps to the initial and

linearized generalized equations under the assumptions made.   G

Let us single out a special case of the results obtained when both (H3) and

(H4) are fulfilled with P = {p} in (H4).

Corollary 5.10. Let f admit representation (5.16) where b is continuous dif-

ferentiable around z and h is Lipschitz continuous around p with

(5.18) rank(J h(p)) = m = k

in terms of generalized Jacobian of h at p . Then condition (5.7) is necessary

and sufficient for the solution map (5.2) to be pseudo-Lipschitzian around (p,z)

which is equivalent to the pseudo-Lipschitzian property of the solution map (5.4)

around (0, z).

Proof. According to Clarke [4, Theorem 7.1], condition (5.18) implies that «

is a Lipschitzian homeomorphism around h(p), i.e., the fulfillment of (H3).

On the other hand, (5.18) implies (4.32) with P = {p}. Therefore, the results
being proved follow from both assertions in Theorem 5.8 and Corollary 5.9.   G

Note that Clarke's condition (5.18) can be replaced in Corollary 4.10 by

a more general Kummer condition [14] providing a criterion for h to be a

locally Lipschitzian homeomorphism around p . Both Clarke's and Kummer's

conditions imply the main assumption (4.32) in (H4) with P = {p} . Note also

that hypotheses (H3) and (H4) are independent even in the case of P = {p} ;

see Remark 4.12.
Now we obtain some effective necessary and sufficient conditions for the

pseudo-Lipschitzian property of the solution map to the nonlinear generalized
equation (5.1) with the multifunction Q of special structure. For convenience

of the statements, we simplify (H4) assuming that P - {p}. In this case the

conclusions in both assertions (i) and (ii) of Theorem 5.8 and Corollary 5.9

coincide.

Corollary 5.11. Let f in (5.1) satisfy one of the hypotheses (H1)-(H3) or (H4)

with P - {p} and let Q have convex graph. Then condition (4.7) with the

operator L in (5.5) is necessary and sufficient for the solution map (5.2) to be
pseudo-Lipschitzian around (p, z).

Proof. This follows from Corollaries 5.9 and 4.2 for the linearized generalized

equation (5.3).   G

Corollary 5.12. Let f in (5.1) satisfy one of the hypotheses (H1)-(H3) or (H4)
with P = {p} and let Q admit representation (4.9) with some closed and convex

sets E and Q. Then condition (5.8) is necessary and sufficient for the solution

map (5.2) to be pseudo-Lipschitzian around (p, z).

Proof. This follows from Corollaries 5.9 and 4.3 for the linearized generalized
equation (5.3).   G
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Corollary 5.13. Let f in (5.1) satisfy one of the hypotheses (H1)-(H3) or (H4)
with P = {p} and let Q admit representation (4.11) where 8: R" x Rm -► R«

is strictly differentiable at (1, -f(p, z)). Then the condition

Í5 19) tW^' -f&> Wif®* *) - V^> -f(P> z)))*w* = 0&
w* e N(8(1, -f(p, z))|A)] => (V,0(z, -/(p, z))*w* = 0

is necessary and sufficient for the solution map (5.2) to be pseudo-Lipschitzian

around (p, z) when either

(a) V0(z, -f(p, 1)) is quadratic (q = n + m) and nonsingular, or

(b) A is regular at 8(1, -f(p,1)) and

(5.20) Ker(V0(z, -f(p, 1)))* n N(8(z, -f(p, z))|A) = {0}.

Proof. This follows from Remark 4.9 and Corollary 4.4 for the linearized equa-

tion (5.3) when 0 is strictly differentiable at (z, -f(p, 1)).   G

Corollary 5.14. Let f and Q satisfy the general assumptions of Corollary 5.12

with A regular at 8(1, -f(p, 1)). If

(5.21) rank(Vy8(1,-f(p,1))) = q<m,

then condition (5.12) is necessary and sufficient for the pseudo-Lipschitzian prop-

erty of the solution map (5.2) around (p,~z).

Proof. If (5.21) is fulfilled, then (5.19) is equivalent to (5.12) while (5.20) holds
automatically. Therefore, the result follows from Corollary 5.12 (cf. also Corol-

lary 4.6).   G

Let us formulate a necessary and sufficient condition for the pseudo-Lipschitz-

ness of the solution map to (5.1) when Q admits the classical representation

(4.21). Consider the matrix C in (5.13) and denote by c, (i = 1, ... , q) its

vector columns.

Corollary 5.15. Let f in (5.1) satisfy the assumptions in Corollary 5.14 and let

Q admit representation (4.21) with real-valued functions 0, strictly differentiable

at (1, -f(p, 1)). If vectors

Vyd\(l,   -f(p,1)),Vy82(1,   -f(p,Z)),...   ,Vy8q(1,   ~f(P,l))

are linearly independent, then condition (5.14) with the matrix C in (5.13) is

necessary and sufficient for (5.2) to be pseudo-Lipschitzian around (p,1).

Proof. This follows from Corollary 5.14 when A is defined by (4.24); cf. also
Corollary 4.7.   G

The next assertion contains a criterion of the Lipschitzian stability for the

generalized equation (5.1) in the case when Q is the subdifferential mapping

(4.25). This includes the cases of nonlinear variational inequalities and com-

plementarity problems; see §7 for further considerations.

Corollary 5.16. Let f in (5.1) satisfy one of the hypotheses (HI )-(H3) or (H4)
with P = {p} and let Q be a subdifferential mapping of the form (4.25) with
an extended-real-valued function tp. Then condition (5.15) is necessary and

sufficient for the solution map (5.2) to be pseudo-Lipschitzian around (p,~z).

Proof. This follows from Corollaries 5.9 and 4.8 for the linearized generalized

equation (5.3).   G
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Now we consider a special case of the generalized equation (5.1) when Q(z) =

{0}. The solution map (5.2) to such a generalized equation is reduced to

(5.22) I.(p) = {zeRn:f(p,z) = 0}.

This means that Z(p) is actually an implicit mapping defined by the equation

f(p, z) = 0. In contrast to the classical implicit function theorem and its recent

generalizations (see, e.g., Robinson [31] and references therein), we consider

here a general setting when the mapping X may be multivalued, i.e., (5.22)

defines an implicit multifunction. The next result contains a general sufficient

condition for the pseudo-Lipschitzian property of the implicit multifunction

(5.22) and provides some additional assumptions when the condition obtained

is necessary and sufficient for this property.

Theorem 5.17. (i) Let f satisfy the assumptions in Theorem 5.1 at a point (p, 1)

with f(p, z) = 0. Then the condition

(5.23) rank(Vz/(p, 1)) = m < n

is sufficient for the implicit multifunction (5.22) to be pseudo-Lipschitzian around

(ii) Condition (5.23) is necessary and sufficient for the pseudo-Lipschitzian

property of (5.22) around (p, z) in the following two cases:

(a) /   is strictly  differentiable  in   (p, z)   at  the point   (p,1)   and

rank(V pf(p, 1)) = m<k;
(b) / admits representation (5.16) and satisfies hypothesis (H3) in Theo-

rem 5.8.

(hi) If f admits representation (5.16) and satisfies hypothesis (H4) in The-

orem 5.8, then condition (5.23) is necessary and sufficient for the implicit
multifunction (5.22) to be pseudo-Lipschitzian around any point (p ,1) with

h(p) = -b(i).

Proof. Assertion (i) follows directly from Theorem 5.1 when Q(z) = {0} . In

case (a) assertion (ii) is implied by assertion (i) in Theorem 5.8 under hypotheses
(HI) and (H2). In case (b) this assertion follows from (i) in Theorem 5.8

under hypothesis (H3). Assertion (hi) follows from (ii) in Theorem 5.8 where
P = {peRk: h(p) = -b(1)}.   G

Note that (5.23) can be referred to the classical Ljusternik-Graves surjectivity

condition; see [2]. Therefore, the results obtained ensure that this condition is

not only sufficient for the pseudo-Lipschitzian property of implicit multifunc-

tions but also necessary for such a property in a broad setting.

6. NONSMOOTH GENERALIZED EQUATIONS

In this section we consider the nonlinear generalized equation (5.1) without

any assumptions about smoothness of / in the decision variable z or in the

parameter p . We study the pseudo-Lipschitzian property of the solution map

(5.2) for such a class of nonsmooth generalized equations where / admits a

strong approximation in the sense of Robinson [31]. This assumption allows us

to develop the procedure from the previous section and obtain effective sufficient

conditions for the Lipschitzian stability of (5.1) in terms of the coderivative

(2.5) for / and Q.
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Following [31], we say that the function g: Rn —> Rm strongly approximates

f in z at (p, 1) if for each e > 0 there exist neighborhoods U of 1 and V

of p such that whenever z, z' e U, and p e V one has

(6.1) \\[f(p, z) - g(z)} - [f(p, z') - g(z')]\\ < e\\z - z'\\.

This definition actually means that the difference f(p, z) - g(z) is strictly

differentiable in z at (p, z) with the derivative of zero, though neither /

nor g is assumed to be differentiable in any sense. Moreover, if gi strongly

approximates /, then the function gi + g2 has the same property for any

g2: R" -» Rw strictly differentiable at 1 with Vg2(1) = 0.

Let us observe that any function / in the separable form (5.16) admits a

strong approximation in z at any (p, 1). Indeed, such a strong approximation

is provided by the function g(z) := b(z) which satisfies (6.1) with e = 0.

If g strongly approximates / in z at (p, 1), then employing Corollary 2.7

to the difference
y(z):= f(p, z)-g(z)

with Vy(z) = 0, we obtain

(6.2) D*zf(p,z)(y*) = D*g(z)(u*)   V/er

for any strong approximation g , where D*f(p,1) means the coderivative (2.5)

of the vector function z -* f(p, z) at 1. If f(p, •) is Lipschitz continuous

around 1 and d~(y*, f)(p, 1) means the subdifferential (2.13) of the function

2 -* (y* > /(]>> z)) at 1, then (6.2) implies

(6.3) dr(y\f)(p,1) = d-(y*,g)(z)   Vy*eRm

due to Proposition 2.8. Now using Corollary 2.9, one easily has

(6.4) d-{y*, f)(p, 1) c (Jzf(p, l))*y* = (Jg(l)Ty*   Vy* e Rm

where Jzf(p, 1) means the generalized Jacobian of the vector function z —>

f(p, z) at 1.
Let / be strictly differentiable in z at (p, z). Using (6.1) and the definition

of strict derivative, one can easily see that the function

(6.5) g(z) := f(p, 1) + Vzf(p, 1)(z -1)

strongly approximates / in z at (p ,1). Note that there are other strong ap-

proximations g of / in z at this point but all of them are strictly differentiable

at z with

(6.6) Vg(z) = Vzf(p,1).

It is easy to get examples where nonsmooth functions / admit strong ap-

proximations which must also be nonsmooth. In particular, if / is strictly

differentiable in z at (p, 1) and 0 : Rr —> R" is locally Lipschitzian around w

with 8(w) = 1, then the composite function

y/(p, w) := f(p, 6(w))

has a strong approximation in w at (p, w) ; cf. [31, Proposition 2.5]. If / has

the so-called strong partial B-derivative Dzf(p,1) in z at (p,1), then the

function

f(p,1) + Dzf(p,1)(z-1)
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provides a strong approximation of / in z at (p, 1) ; see [10, 26, 31] for more

details.
The following result ensures a general sufficient condition for the pseudo-

Lipschitzian property of the solution set to the nonsmooth generalized equation

(5.1).

Theorem 6.1. Let f be locally Lipschitzian in p uniformly in z around the

point (p, 1) satisfying (5.1) and let f admit a strong approximation in z at

(p ,1). Assume that either f(p, •) is Lipschitz continuous around 1 or Q is

pseudo-Lipschitzian around (1, -f(p, 1)), i.e.,

D*Q(1,-f(p,1))(0) = {0}.

Then the condition

(6.7) [0 € D\f(p, 1)(y*) + D'Q(1, -f(p, 1))(y*)\ =» y* = 0

is sufficient for the solution map (5.2) to be pseudo-Lipschitzian around (p,z).

Proof. Let g be some strong approximation of / in z at (p, 1) which exists

according to the assumptions. Note that g has to be Lipschitz continuous

around z if f(p, •) possesses this property. Using this strong approximation,

we consider the approximate generalized equation

(6.8) 0 e g(z) - y + Q(z)

and its solution map

(6.9) T(y):={zeRn:0eg(z)-y + Q(z)}

depending on the linear parameter y e Rm . Denoting y = g(1) - f(p, 1),

one can see that (y, 1) satisfies the approximate generalized equation (6.8).

According to Dontchev and Hager [6, Theorem 4.1], the pseudo-Lipschitzian

property of (6.9) around (y, 1) implies, under the assumptions made, the same

property of the solution map (5.2) around (p, 1). It is obvious that for each

y the set T(y) in (6.9) coincides with the value of the inverse mapping L~x(y)

to the multifunction

(6.10) L(z) := g(z) + Q(z).

Therefore, the pseudo-Lipschitzian property of T around (y, 1) actually means

that multifunction (6.10) has the pseudo-Lipschitzian inverse around this point.

By virtue of Corollary 3.8(i), it is equivalent to the condition

(6.11) [0eD*L(1,y)(y*)]^y*=0

in terms of the coderivative (2.5) for multifunction (6.10). Now using Corollary

3.6 for representing the coderivative of the sum in (6.10), one can see that, under

the assumptions made, (6.11) is automatically fulfilled if

[0 6 D*g(1)(y*) + D*Q(1, -f(p, z)W)\ =>y* = 0.

But due to (6.2), the latter condition coincides with (6.7) which is, therefore, a

sufficient condition for the solution map (5.2) to be pseudo-Lipschitzian around

(p,1).    D

Remark 6.2. If / is strictly differentiable in z at the point (p, 1), then it
always admits the strong approximation (6.5).  Taking this approximation in
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Theorem 6.1, we can see that the result obtained implies Theorem 5.1 in the

previous section. Let us observe that any other strong approximation g of

such a function / provides the same result in Theorem 6.1 because one always

has property (6.6). The advantage of the smooth case in §5 consists in proving

the necessity of the sufficient condition obtained for the solution set (5.2) being

pseudo-Lipschitzian around (p, 1) under some additional assumptions. Using

the procedure above, we cannot obtain any results in this direction without the

strict differentiability property of / in z at (p, 1).
Let us formulate a corollary of Theorem 6.1 for the case of separable func-

tions (5.16) in the nonsmooth generalized equation (5.1) where the main as-

sumption of the theorem is automatically fulfilled.

Corollary 6.3. Let (p, 1) satisfy the separable generalized equation

(6.12) 0 e b(z) + h(p) + Q(z)

where both b and h are Lipschitz continuous around 1 and p respectively.

Then the condition

(6.13) [0 e d'(y*, b)(1) + D*Q(1, -b(1) - h(p))(y*)] ̂ y* = 0

is sufficient for the solution map (6.12) to be pseudo-Lipschitzian around (p,1).

Proof. It is obvious that the function f(p, z) := b(z) + h(p) satisfies all the

assumptions in Theorem 6.1 with the strong approximation g(z) := b(z). For

this /, condition (6.7) is reduced to (6.13).   G

Now we consider some corollaries of the Theorem 6.1 for the case of Lip-

schitzian functions /. One can immediately obtain their reformulations in the

separable case (6.12). The following result is expressed in terms of the partial

generalized Jacobian of / in z .

Corollary 6.4. Let f satisfy all the assumptions in Theorem 6.1. Then the con-

dition

(6.14) [0 e (Jzf(p, 1)fy* + D*Q(1, -f(p, 1))(y*)] => y* = 0

ensures the pseudo-Lipschitzian property of the solution map (5.2) around (p,1).

Proof. This follows from Theorem 6.1 by virtue of the inclusion in formula

(6.4).   G

Let us obtain some effective concretizations of the results in Theorem 6.1

and Corollary 6.4 for multifunctions Q of special structure.

Corollary 6.5. Let the multifunction Q in (5.1) have convex graph and let the

function f satisfy all the assumptions in Theorem 6.1. For any matrix A e

Jzf(p, 1) we consider the multivalued operator

LA:=f(p,1) + A(z-1) + Q(z)

and assume that

(6.15) OeimHlmL^)   VAeJzf(p,1).

Then the solution map (5.2) is pseudo-Lipschitzian around (p ,1).

Proof. Considering (6.14), we take any matrix A e Jzf(p, 1) such that

(6.16) 0 e A*y* + D*Q(1, -f(p, z))(y*).
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Using Proposition 2.5(i) for the representation of the coderivative for the convex-

graph multifunction Q and taking into account that

(A*y*,z-1) = (y*,A(z-1)),

one can rewrite (6.16) in the equivalent form

(y*, u) > 0   for any u e ImZ^.

Similarly to the proof of Corollary 4.2, now we conclude that condition (6.15)

is necessary and sufficient for the adjoint generalized equation (6.16) having

the only trivial solution y* — 0 when A is an arbitrary matrix belonging to

Jzf(p, ~z) ■ Therefore, (6.15) implies (6.14) and provides a sufficient condition

for the pseudo-Lipschitzian property of the solution map to the nonsmooth

generalized equation (5.1) with a convex-graph multifunction Q.   G

Corollary 6.6. Let f satisfy all the assumptions in Theorem 6.1 and let Q be

represented in form (4.9) with some closed and convex sets E and f2. Then the

condition

0 e int{f(p, l) + A(Ci-i) + E}   VAe Jzf(p, 1)

is sufficient for the solution map (5.2) to be pseudo-Lipschitzian around (p ,1).

Proof. This follows directly from Corollary 6.4.   G

Corollary 6.7. Let f satisfy all the assumptions in Theorem 6.1 and let Q

be represented in form (4.11) where A c Rq is a closed set and 0: R" x

Rm —> R<? is a vector function continuous around the point (1) - f(p, 1)) with

8(1,-f(p,l))eA. Then:

(i) The condition

(617) [(0,0)e(dr(y*,Mp,i),y*) + D*8(z,-f(p,i))(w*)&

['    ' w*eN(8(l, -f(p, l))\A)]^w* = 0&y* = 0

is sufficient for the solution map (5.2) to be pseudo-Lipschitzian around

(P,z)-

(ii) If 0 is Lipschitz continuous around (z, -f(p, z)), then the sufficient
condition (6.17) is equivalent to

(6.18)

(6.19)

[(0, 0) 6 (d~(y*, f)(p, 1), y*) + d~(w*, 8)(1, -f(p, 1)) &

w*eN(8(1,-f(p,l))\A)]=*w* = 0

which is automatically fulfilled when

[(0, 0) e ((Jzf(p, z))*y*, f) + (JÔ(1, -f(p, l)))*w* &

w* e N(8(1, -f(p, 1))\A)] ̂ w*=0.

(hi) If 8 is strictly differentiable at (z, -f(p, z)), then the sufficient condi-

tion (6.19) is equivalent to

(6.20)
[0 e (Vy8(1, -f(p, 1))Jzf(p, 1) - Vz0(z, -f(p, 1)))*w* &

w*eN(8(1,-f(p,1))\A)]^w*=0

which is automatically fulfilled when

(6.21)       rank(Vy0(z, -f(p, 1))Jzf(p, 1) - Vz8(1, -f(p, 1))) = q < n.
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Proof. First we prove (i). Let us obtain a representation of the coderivative

(2.5) for the multifunction Q of the form (4.11). Using the definition of the
coderivative and Corollary 2.11, we have the inclusion

D*Q(1,-f(p,1))(y*)
(6.22) c {z* e R": (z*, -y*) e D*8(1, -f(p, 1))(w*)

vrithw*eN(0(z,-f(p,z))\A)}

under the condition

(6.23) KerD*8(1, -f(p, 1)) n N(8(1, -f(p, 1))\A) = {0}.

Now one can easily see that if (6.17) holds, then (6.23) also holds and hence

(6.17) implies (6.7) by virtue of representation (6.22). This proves assertion (i)

in the corollary under consideration.

Under the Lipschitzian assumption in (ii), the equivalence between (6.17)

and (6.18) follows from Proposition 2.8. Condition (6.19) always implies (6.18)
due to the inclusion in formula (6.4).

If 0 is strictly differentiable at (1, -f(p, 1)), then

J8(1, -f(p, 1)) = (Vz0(z, -f(p, 1)), Vy0(z, -f(p, z)))

and (6.19) is reduced to (6.20) by elementary transformations. It is obvious that

the rank condition (6.20) implies w* = 0 due to the first part of (6.20).   G

The results obtained in Corollary 6.7 generalize the corresponding results in

Corollaries 4.5, 5.5, and the sufficiency part of Corollary 4.4. Now we consider a

special case of Corollary 6.7 where Q admits the classical representation (4.21)

with real-valued functions 0, strictly differentiable at (1, -f(p ,1)). Using

notation (4.22), we define the family of matrices

(6.24) CA := Vy0(z, -f(p, 1))A - Vz0(z, -f(p, z))

depending on the matrix parameter A . The following result provides a sufficient

condition for the Lipschitzian stability of the nonsmooth system (5.1), (4.21)

in a generalized form of the Mangasarian-Fromovitz constraint qualification.

Corollary 6.8. Let f satisfy all the assumptions in Theorem 6.1 and let Q be

represented in the form (4.21) where the functions 0, are strictly differentiable

at (1, -f(p, 1)) for all i = 1, 2, ... , q. Assume that for any A e Jz(p, z)
the qualification condition (5.14) is fulfilled where (c\,c2,..., cq) are the vector

columns of the matrix CA in (6.24). Then the solution map (5.2) to (5.1), (4.21)
is pseudo-Lipschitzian around (p, z).

Proof. This follows from assertion (hi) in Corollary 6.7 for the case of A having

the form (4.24).   G

Now let us consider a general setting when the multifunction Q is repre-

sented in the subdifferential form (4.25) which covers the case of nonsmooth

variational inequalities. In this setting, Theorem 6.1 implies the following non-

smooth extensions of the corresponding results in Corollaries 4.8 and 5.6.

Corollary 6.9. Let f satisfy all the assumptions in Theorem 6.1 and let Q be

the subdifferential mapping (4.25) generated by an extended-real-valued function
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tp. Then the solution map (5.2) is pseudo-Lipschitzian around (p,1) if the

relationship

(6.25) [0 € d-(y*, f)(p, 1) + d2--tp(1, -f(p, 1))(y*)] ̂  y* = 0

holds. It happens, in particular, when one has

(6.26) [0 6 (Jzf(p, z))*y* + d2'-tp(1, -f(p, z))(y*)] =*y*=0.

Proof. This follows from Theorem 6.1 and Corollary 6.4 due to the definition

of the second order subdifferential (2.14).

Remark 6.10. Let us compare the conditions obtained in Theorem 6.1 and its

corollaries with the corresponding results in Mordukhovich [23]. It is proved

in [23, Corollary 5.2] that if / is Lipschitz continuous in both variables (p, z)

around (p, 1) and przd~(y*, f)(p, 1) denotes the projection of the subdif-

ferential d~(y*, f)(p, 1) c Rk x R" on the space R" , then the condition

(6.27) [0 e przd~(y*, f)(p, 1) + D*Q(1, -f(p, z))(y*)] =>y* = 0

is sufficient for the solution map (5.2) being pseudo-Lipschitzian around (p, z).

This condition is satisfied a fortiori when

(6.28) [0 e (przJf(p, z))*y* + D*Q(1, -f(p, 1))(y*)} ̂y* = 0

in terms of the projection of the generalized Jacobian Jf(p, 1) C Rmk x Rm"

on Rmn ; see [23, Corollary 5.3]. By virtue of Proposition 2.8, the sufficient

condition (6.7) in Theorem 6.1 is equivalent to

(6.29) [0 e d-{y*, f)(p, z)(y*) + D*Q(z, -f(p, 1))(y*)] =* y* = 0

in the case of Lipschitzian functions /. Now employing Corollaries 2.13 and

2.14, one can conclude that the sufficient conditions in Theorem 6.1 and Corol-

lary 6.4 imply, respectively, (6.27) and (6.28). Moreover, these two pairs of

conditions coincide for the separable generalized equations (6.12); it follows

from the equality case in Corollaries 2.13 and 2.14. Observe, however, that

the conditions in [23] are proved without any assumptions about the existence

of a strong approximation of f in z. Therefore, the results in Theorem 6.1
and Corollary 6.4 strengthen the corresponding results in [23] when / admits

a strong approximation in z at (p, 1) (in particular, for smooth generalized

equations in §5). In a general nonsmooth setting, these two groups of results

are independent. Note that in [23, Theorem 5.1] one can find a sufficient condi-

tion for the solution map (5.2) to be pseudo-Lipschitzian around (p, 1) in the

case when / is merely continuous in (p, z) around this point. This condition

is expressed in terms of the coderivative of / in both (p, z) having a form

different from (6.7), (6.27), and (6.29); cf. condition (7.3).

Remark 6.11. Following the schemes in proving Corollaries 6.5-6.8, one can

obtain the corresponding corollaries of the sufficient conditions (6.27) and

(6.28) for the special classes of multifunctions Q. In these results, the sets

0fO>*,./)(p,Tz) and Jzf(p,~z) are changed, to przd~(y*, f)(p, 1) and
przJf(p, z), respectively.

To conclude this section, we consider a special case of Theorem 6.1 with

Q(z) = {0}. In this situation, the solution map (5.2) is reduced to the implicit

multifunction (5.22) defined by the equation f(p, z) = 0 with a nonsmooth

function /.
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Corollary 6.12. Let f be locally Lipschitzian in p uniformly in z around the

point (p, 1) with f(p, 1) — 0 and let f admit a strong approximation in z

at (p,1). Then the implicit multifunction (5.22) is pseudo-Lipschitzian around

(P,z) if

(6.30) KerD¡f(jJ, 1) = {0}.

If f(P~, •) is Lipschitz continuous around 1, then (6.30) is equivalent to

(6.31) Kerd-(-,f)(p,1) = {0}

which is automatically fulfilled when

(6.32) rank(Jzf(p, 1)) = m < n.

Proof. This follows directly from Theorem 6.1 and Corollary 6.4 when Q(z) =

{0}.    G

Remark 6.13. Condition (6.31) always implies that

[Oeprzd-{y*,f)(p,z)]=*y* = 0.

In Mordukhovich [23, Corollary 4.14], the latter condition is proved to be suf-

ficient for the pseudo-Lipschitzness of the implicit multifunction (5.22) when

/ is Lipschitz continuous in both (p, z) around (p, z) but may not admit a

strong approximation in z . Moreover, condition (6.32) for such / with m - «

ensures not only Lipschitzness but also (locally) single-valuedness of the implicit

mapping in (5.22); see Clarke [4, §7]. Note that Kummer [13] obtained a neces-

sary and sufficient condition for the implicit mapping (5.22) to be single-valued

and Lipschitz continuous around p in the case of Lipschitzian functions /.

Some other results in this direction are considered in the next section under

different assumptions about /.

Remark 6.14. We have studied the pseudo-Lipschitzian property of solution
maps to generalized equations around the given point (p ,1). If the conditions

obtained are fulfilled for all points z satisfying the corresponding generalized

equations together with given p , then these results provide sufficient conditions

(respectively, necessary and sufficient conditions) for the sub-Lipschitzian prop-

erty of the solution maps around p . This follows from Proposition 3.4(i). If,

in addition, the corresponding solution maps are locally bounded around p,

then the conditions obtained ensure their classical locally Lipschitzian behavior

around this point, due to Proposition 3.4(h).

7. Monotone processes and variational inequalities

This concluding section is devoted to obtaining effective sufficient condi-

tions ensuring the (locally) single-valuedness and Lipschitz continuity of the

solution map to the generalized equation (5.1) around a given point (p,1)

satisfying (5.1). We consider a general setting when the continuous function

/: Rk x R" —► R" may be nonsmooth around (p, z) and the closed-graph mul-

tifunction Q is a monotone operator from R" into itself. This includes, in
particular, the cases of nonsmooth variational inequalities and complementar-

ity problems. If / happens to be strictly differentiable at (p ,1), then the

conditions obtained appear to be necessary and sufficient for the locally single-

valuedness and Lipschitz continuity of the solution map (5.2) under some ad-

ditional assumptions.   In this way, we obtain, in particular, a necessary and
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sufficient condition for Robinson's strong regularity property [29] in terms of

the coderivative (2.5) of any monotone operator Q in the smooth generalized

equation (5.1). The results obtained in this section are based on the previous

conditions ensuring the pseudo-Lipschitzian property of the solution map and

on the single-valuedness property of monotone operators in Proposition 3.12.

We say that the solution map (5.2) is locally single-valued and Lipschitz con-

tinuous around (p, 1) if there exist neighborhoods U of p and V of z as

well as a Lipschitzian function z: U —► V such that z(p) is a unique solution

in V to the generalized equation (5.1) for each p e U.

Theorem 7.1. Let f be locally Lipschitzian in p uniformly in z around the

point (p, z) satisfying (5.1) and let f admit a strong approximation in z at

(p, 1) which is either positive or negative monotone simultaneously with the

multifunction Q. Assume that either f(p, •) is Lipschitz continuous around

1 or Q is pseudo-Lipschitzian around (1, -f(p,1)). Then condition (6.7)

is sufficient to the solution map (5.2) to be locally single-valued and Lipschitz

continuous around (p,1).

Proof. Let g be any strong approximation of / in z at (p, 1) satisfying the

assumptions imposed. Considering the sum g + Q of two monotone operators,

one can see that this sum is also monotone in the same direction. This easily

implies the monotonicity property of the inverse operator (g+Q)~x . Now let us

consider the solution map (6.9) to the approximate generalized equation (6.8). It

is obvious that values Y(y) in (6.9) coincide with values of the inverse operator

(g + Q)~l(y) • Therefore, the solution map (6.9) is a monotone operator from

R" into itself. According to the proof of Theorem 6.1, condition (6.7) ensures

the pseudo-Lipschitzian property of (6.9) around the point (g(l)-f(p, 1) ,1).

Employing Proposition 3.12, we conclude that the monotone operator T in

(6.9) is actually single-valued and Lipschitz continuous around the point y :=

g(1)-f(p,1) with T(y) = {1}.
Now one can use the results in Robinson [29, 31] and Dontchev and Hager

[6] about locally single-valued and Lipschitz continuous solutions to parametric

generalized equations via the same properties of solutions to their strong ap-
proximations. The most general (to the best of our knowledge) result in this

direction obtained in Dontchev and Hager [6, assertion 3 in Theorem 4.1]. They

prove that, under the assumptions of Theorem 7.1, locally single-valuedness and

Lipschitzness of the map Y in (6.9) around (y, 1) imply these properties of

the solution map (5.2) around the point (p ,1). Therefore, condition (6.7)

is sufficient for the "monotone" generalized equation (5.1) having the unique

solution around (p, z) with the Lipschitzian dependence on the parameter.   G

Corollary 7.2. Let all the assumptions in Theorem 7.1 be fulfilled with f(p, •)
being Lipschitz continuous around z. Then condition (6.14), stated in terms of

the partial generalized Jacobian of f in z, is sufficient for locally uniqueness

and Lipschitz continuity of the solution map to the generalized equation (5.1)

around (p ,1).

Proof. This follows from Theorem 7.1 because (6.14) always implies (6.7) due

to the inclusion in formula (6.4).    G

Now we obtain two corollaries of Theorem 7.1 for some cases when / au-

tomatically admits strong approximations in z .
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Corollary 7.3. Let f be strictly differentiable in z at (p, 1) and let it be locally
Lipschitzian in p uniformly in z around (p,1). Assume that Q is positive (re-

spectively, negative) monotone and the matrix Vzf(jp, z) is positive (negative)

semidefinite with respect to Dom Q in the sense that

(Vz/(p, z)u, u) >0 (<0)   for all u e Dom Q - Dom Q.

Then condition (5.7) is sufficient for the solution map (5.2) to be locally single-

valued and Lipschitz continuous around (p ,1).

Proof. If / is strictly differentiable in z at (p, 1), then the function g in

(6.5) provides a strong approximation of / in z at this point. One can easily

see that the single-valued operator z —» f(p, 1) + Vzf(p, 1)(z -1) from R"

into itself is positive (negative) monotone on the domain of Q if the matrix

Vzf(p, ~z) is positive (respectively, negative) semidefinite with respect to this

set. Therefore, we meet all the assumptions in Theorem 7.1 where condition

(6.7) is reduced to (5.7) in the smooth case under consideration.   G

Corollary 7.4. Let (p,1) satisfy the separable generalized equation (6.12) where

both b and h are Lipschitz continuous around 1 and p respectively. If b is

positive or negative monotone simultaneously with the multifunction Q, then

condition (6.13) is sufficient for the solution map

(7.1) l(p) := {z e Rn : 0 e b(z) + h(p) + Q(z)}

to (6.12) being locally single-valued and Lipschitz continuous around (p ,1).

Proof. We meet all the assumptions in Theorem 7.1 with the function g(z) =

b(z) providing a strong approximation of / in z at (p ,1). Condition (6.7)

coincides with (6.13) for this case.   G

Following the procedure in §§5 and 6, one can formulate the corresponding
corollaries of Theorem 7.1 and Corollaries 7.2-7.4 for the cases when Q admits

one of the special structures considered above. Now we obtain a new result for

the separable generalized equation (6.12) with an arbitrary multifunction Q

and a function b being merely continuous around 1.

Theorem 7.5. Let (p,1) satisfy the separable generalized equation (6.12) where

b is continuous around 1 and h is Lipschitz continuous around p. If b is

either positive or negative monotone simultaneously with the multifunction Q,

then the condition

(7.2) [z* e (-D*b(l)(y*)) n D*Q(1, -b(z) - h(p))(y*)] =* y* = 0 & z* = 0

is sufficient for the solution map (7.1) being locally single-valued and Lipschitz

continuous around (p ,1).

Proof. According to Mordukhovich [23, Theorem 5.1], the condition

[(P*, -z*) e D*(b + h)(p, l)(y*)8cz* e Q(i, -b(l) - h(p))(y*)}

[ ' ' =>/?* = 0,  z* = 0&y* = 0

ensures the pseudo-Lipschitzian property of the solution map (7.1) around

(p, z) under the general assumptions in the theorem. One can easily see that

D*b(p,1)(y*) = (0,D*b(1)(y*))   and   D*h(p ,1)(y*) = (D*h(p)(y*), 0)-
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Now employing Corollary 3.6 to the sum b + h where h is Lipschitzian, we

obtain
D*(b + h)(p, 1)(y') c (d~(y*, h)(p), D*b(1)(y*)).

Therefore, condition (7.2) implies (7.3), thus ensuring the pseudo-Lipschitzian

behavior of the solution map (7.1) around (p, z). It is clear that this condition

is also sufficient for the pseudo-Lipschitzian property of the multifunction

(7.4) T(v) := {z e R" : 0 e b(z) -v + Q(z)}

around (h(p) ,1). The latter multifunction is the solution map to the auxiliary

generalized equation 0 e b(z)-v + Q(z) with the linear additive parameter v e

R". Under the monotonicity assumptions made in the theorem, the operator

(b + Q)(z) is monotone. This implies the monotonicity of the multifunction

T(v) = (b + Q)~x(v). Now employing Proposition 3.12, we can conclude that

condition (7.2) actually ensures the single-valuedness and Lipschitz continuity

of T around v = h(p) with F(v) = {1}. Therefore, the solution map (7.1)

represented in form Z(p) = T(h(p)) turns out to be locally single-valued and

Lipschitz continuous around (p ,1).   G

Remark 7.6. Let us observe that condition (7.2) is equivalent to

(7.5) [0 e D*b(1)(y*) + D*Q(1, -b(1) - h(p))(y*)] =* y* = 0

if either the multifunction Q is pseudo-Lipschitzian around (z, -b(1) - h(p))

or the function b is Lipschitz continuous around z . This follows from Propo-

sition 3.5. Note that (7.5) is reduced to (6.13) in the case of b being Lipschitz

continuous around 1. Therefore, Theorem 7.5 generalizes Corollary 7.4 ob-

tained above from Theorem 7.1.

Now using the representations of the coderivative D*Q form Proposition

2.5(i) and Corollary 2.11 for multifunctions Q of special structure, one can

easily obtain the corresponding concretizations of Theorem 7.5; cf. Corollaries

6.5-6.8. Let us formulate a result for the case of representation (4.9) where E

and Q may be nonconvex sets belonging to orthogonal affine subspaces in R" .

Corollary 7.7. Let (p,1) satisfy the separable generalized equation (6.12) where
h is Lipschitz continuous around p and b is a monotone mapping continuous

around 1. Suppose that the multifunction Q admits representation (4.9) where

E c R" and Q c R" are closed sets such that E - E c L and Q - Q c Lx for
some linear subspace L in R" . Then the condition

(7-6)
[0 € z* + D*b(1)(y*) with z* e N(1\Q) and

- y* e N(-b(1) - h(p)\E)] ^ z* = O&y* = 0

is sufficient for the solution map (7.1) to be locally single-valued and Lipschitz

continuous around (p ,1).

Proof. First let us observe that the normal cone (2.1) enjoys the multiplicative

property
N((xi, x2)|fii x Q2) = N(xi\Qi) x /V(x2|f22)

for any closed sets Í2i c R" and Q2 c Rm ; this follows directly from the

definition. Now considering the coderivative (2.5) for the multifunction Q in

(4.9) with gph Q = Q x E, we get the relationship

z* eD*Q(1, -b(1) - h(p))(y*) o z* e/V(z|Q)& -y* e N(-b(1) - h(p)\E).
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This implies the equivalence between (7.2) and (7.6) for the multifunction Q

under consideration. According to the properties of E and Q assumed, one

has

(zi -z2,yi-y2) = 0   for any zx, z2 e Q and yx, y2 e E,

i.e., the operator Q in (4.9) is positive and negative monotone simultaneously.

Therefore, we meet all the assumptions in Theorem 7.5 which ensures the suffi-

ciency of condition (7.6) for the properties of the solution map being proved.   G

Now let us come back to the case of smooth generalized equations (5.1).

We consider some additional assumptions when the sufficient condition (5.7)

appears to be necessary and sufficient for the solution map (5.2) being locally

single-valued and Lipschitz continuous.

Theorem 7.8. Let f be strictly differentiable in z at the point (p, z) satisfying

the generalized equation (5.1). Assume that Q is positive (negative) monotone

and Vzf(p, z) is positive (respectively, negative) semidefinite with respect to

Domö. Then:

(i) Condition (5.7) is necessary and sufficient for the solution map (5.2) being

locally single-valued and Lipschitz continuous around (p, 1) if one of

the hypotheses (H1)-(H3) in Theorem 5.8 is fulfilled.
(ii) For the separable form (6.12) of (5.1), the condition

(1.1) [0 e (Vb(i))*y* + D*Q(1, -b(i) - h(p))(y*)] ̂ y* = 0

is necessary and sufficient for local single-valuedness and Lipschitz conti-

nuity of the solution map (1.1) around any point (p, 1) with h(p) = h(p)

if hypothesis (H4) in Theorem 5.8 holds.

Proof. Note that condition (5.7) coincides with (7.5) and the solution map (7.1)

is reduced to (5.2) for the smooth separable generalized equations. Sufficiency
parts in both assertions (i) and (ii) follow from Corollary 7.3. Now let us assume

that the solution map (5.2) is locally single-valued and Lipschitz continuous

around (p ,1). Then it obviously will be pseudo-Lipschitzian around (p,1).

According to assertion (i) in Theorem 5.8, condition (5.7) is fulfilled in the

case under consideration when one of the hypotheses (H1)-(H3) holds. This

proves the necessity part in assertion (i) of Theorem 7.8. The necessity part in

assertion (ii) of this theorem is proved quite similarly by employing assertion

(ii) in Theorem 5.8.   G

Let us observe that, under the assumptions in Theorem 7.8, the solution map

to the nonlinear generalized equation (5.1) is locally single-valued and Lips-

chitz continuous around (p, z) if and only if the solution map to the linearized

equation (5.3) enjoys the same properties (cf. Corollary 5.9 for the pseudo-

Lipschitzian property). One can easily formulate the corresponding analogues

of Corollaries 5.11-5.16 providing necessary and sufficient conditions for the lo-

cally single-valuedness and Lipschitz continuity properties of the solution maps

to some special generalized equations under additional monotonicity assump-

tions in Theorem 7.8.
Now we consider Robinson's strong reglarity property for smooth generalized

equations and obtain its complete characterization using one of the results in

Theorem 7.8. Let us take a point (p, 1) satisfying (5.1) and let us form the
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linearized operator L(z) by formula (5.5). According to [29], the generalized

equation

(7.8) 0 e f(p, z) + Q(z)

is said to be strongly regular at z if there exist neighborhoods W of the origin

in Rm and V of z such that the restriction to W of the operator L~x n V is

a single-valued and Lipschitz continuous function. Here it is a characterization

of the property introduced under monotonicity assumptions.

Corollary 7.9. Let f be strictly differentiable in z at (p,1). Assume that Q

is positive (negative) monotone and Vzf(p, 1) is positive (respectively, nega-

tive) semidefinite with respect to Dom Q. Then condition (5.7) is necessary and

sufficient for the generalized equation (7.8) to be strongly regular at 1.

Proof. Let us consider the solution map (5.4) to the linearized generalized equa-

tion (5.3). Using the definitions, one can easily see that the strong regularity

property of (7.8) at z is equivalent to the solution map T in (5.4) being locally

single-valued and Lipschitz continuous around (0,1). It is obvious that the

function

f(y, z):=f(p,1) + Vzf(p,1)(z-l)-y

satisfies hypothesis (HI) in Theorem 5.8 at (0, z). Moreover, the matrix

Vz/(0,z) = Vz/(p,z)

is either positive or negative semidefinite with respect to Dom Q by virtue of

our assumptions. Therefore, we can employ assertion (i) in Theorem 7.8 for the

case of the generalized equation (5.3). According to this result, the solution map

(5.4) to (5.3) is locally single-valued and Lipschitz continuous around (0, z).

This proves the strong regularity property of (7.8) at I.   G

Remark 7.10. The strong regularity concept has been introduced and studied

by Robinson [29] for the case of variational inequalities which corresponds to

(7.8) with Q(z) — dô(z, Q) for a convex set Q. This fundamental property

of nonsingular solutions to variational inequalities appears to be equivalent

to some other important properties (as Kojima's strong stability) and admits

different characterizations; we refer to [16] for summarizing and recent devel-

opments. Various specifications and applications of strong regularity conditions

in nonlinear programming and complementarity problems can be found in [7,

10, 16, 29, 30] and elsewhere. It has been shown that such a strong regularity

provides useful formulae for parametric sensitivity analysis ensuring, in par-

ticular, difference estimates between solutions to nonlinear problems and their

linear approximations. The strong regularity assumption is basic in developing

Newton-type numerical methods for solving variational inequalities and nonlin-

ear complementarity problems; see [7, 16, 24] for references and more details.

We hope that the results obtained in this paper will be useful to extend appli-

cations of strong regularity to more general settings.

Let us remind that perturbations problems in mathematical programming

and complementarity as well as in general variational inequalities are imbedded

in the framework of the generalized equations (5.1) with monotone multifunc-

tions Q. Namely, such operators are maximal monotone being represented in

the subdifferential form (4.25) with a convex function tp ; see §3. Using this
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fact, one can formulate corollaries of all the results in this section for convex

subdifferential mappings Q(z) — dtp(z). These results are expressed in terms

of the second order subdifferentials d2'~tp in (2.14) replacing the coderivative

D*Q in the general statements above. Now we formulate, for instance, results in

the case of smooth generalized equations with convex subdifferential mappings

Q.
Corollary 7.11. Let Q admit the subdifferential form (4.25) generated by a
closed proper convex function tp and let f be strictly differentiable in z at

(p, z) where the gradient matrix Vzf(p, 1) is positive semidefinite with re-

spect to DomQ. Then condition (5.15) is sufficient for the solution map (5.2)

being locally single-valued and Lipschitz continuous around (p, 1) when f is

Lipschitzian in p uniformly in z around this point. Moreover, this condition is

necessary and sufficient for the locally single-valuedness and Lipschitz continuity

of (5.2) around (p,1), when one of the hypotheses (H1)-(H3) in Theorem 5.8

is fulfilled. In particular, condition (5.15) is always necessary and sufficient for

the generalized equation (7.8) to be strongly regular at 1.

Proof. With the convex subdifferential mapping Q(z) = dtp(z) in (5.1), we

meet all the assumptions in Corollary 4.3, assertion (i) of Theorem 7.8, and

Corollary 7.9 where condition (5.7) is reduced to (5.15) by virtue of (2.14).   G

Now let us return to Example 4.10 in §4 and let us use Corollary 7.11 for

the linear generalized equation (4.1) equivalent to the perturbed variational

inequality (4.28). In this way, one can conclude that the condition a > 0 ob-

tained is actually necessary and sufficient for the solution map to the variational

inequality being single-valued and Lipschitz continuous around the origin.

Remark 7.12. If an extended-real-valued function tp is concave, then the su-

perdifferential mapping Q(z) = d+tp(z) = dtp(z) is negative monotone. In this

case, we obtain an analogue of Corollary 7.11 where the matrix Vzf(p, z) is

negative semidefinite and (5.7) is replaced by the condition

[0 6 (Vzf(p, 1))*y* + ô2'>(z, -f(p, 1))(y*)) =► y* = 0

in terms of the second order superdifferential in (2.15). One can easily formu-

late analogues of the other results in this section for the concave case under

consideration.

If tp : R" x Rs —► R is a closed proper saddle function (with tp(z, w) convex

in z and concave in w), then its corresponding subdifferential [32, §35] forms

a positive maximal monotone operator from R" x Rs into itself. Therefore,

this case also provides a special setting when one can employ general results in

§7.
In conclusion we apply the results obtained in this section to state new con-

ditions ensuring the existence of (single-valued) implicit functions with the local

Lipschitzian property. Let us consider the equation

(7.9) f(p, z) = 0   with /: R*xl"^ R"

and a point (p, 1) satisfying (7.9). We say that (7.9) defines a locally single-

valued and Lipschitz continuous implicit function around (p, 1) if there exist

neighborhoods U of p and V of z as well as a Lipschitz continuous function

z:t/-tK such that z(p) is a unique solution to equation (7.9) for each p eU
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(so z(p) = 1). This means that the generalized equation (5.1) with Q(z) =

0 has the locally single-valued and Lipschitz continuous solution map around

(p ,1). Therefore, one can employ the results in this section for obtaining

some generalizations of the classical implicit function theorem. Observe that

the multifunction Q(z) = 0 is positive and negative monotone simultaneously.

Corollary 7.13. Let f be continuous in (p, z) and locally Lipschitzian in z uni-

formly in p around the point (p, 1) and let f admit either a positive monotone

or negative monotone strong approximation in z at this point. Then equation

(7.9) defines a locally single-valued and Lipschitz continuous implicit function if

condition (6.30) is fulfilled. If in particular, f(p, •) is Lipschitzian around 1,

then the sufficient condition (6.30) is equivalent to (6.31).

Proof. This follows from Theorem 7.1 when Q(z) = 0 ; cf. Corollary 6.12.   G

Remark 7.14. According to (6.2) and Corollary 3.8(i), condition (6.30) is neces-

sary and sufficient for any strong approximation g of the function f in z at the

point (p,1) to have the pseudo-Lipschitzian inverse g~x around (g(1),1).

The monotonicity assumption in Corollary 7.13 ensures that g~x is actually

single-valued around g(1). Instead of the monotonicity, we can just assume

that, in addition to (6.30), / admits a strong approximation in z at (p, 1)

with the (locally) single-valued inverse. Then Theorem 3.2 in Robinson [31]

guarantees the existence of a locally single-valued and Lipschitz continuous im-

plicit function (7.9) around (p, 1). It happens, in particular, when f(p, •) is
Lipschitzian around z and (6.32) holds with m = « ; see also Remark 6.13.
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