On the core of a cone-preserving map
HTML articles powered by AMS MathViewer
- by Bit Shun Tam and Hans Schneider
- Trans. Amer. Math. Soc. 343 (1994), 479-524
- DOI: https://doi.org/10.1090/S0002-9947-1994-1242787-6
- PDF | Request permission
Abstract:
This is the third of a sequence of papers in an attempt to study the Perron-Frobenius theory of a nonnegative matrix and its generalizations from the cone-theoretic viewpoint. Our main object of interest here is the core of a cone-preserving map. If A is an $n \times n$ real matrix which leaves invariant a proper cone K in ${\mathbb {R}^n}$, then by the core of A relative to K, denoted by ${\text {core}}_K(A)$, we mean the convex cone $\bigcap \nolimits _{i = 1}^\infty {{A^i}K}$. It is shown that when ${\text {core}}_K(A)$ is polyhedral, which is the case whenever K is, then ${\text {core}}_K(A)$ is generated by the distinguished eigenvectors of positive powers of A. The important concept of a distinguished A-invariant face is introduced, which corresponds to the concept of a distinguished class in the nonnegative matrix case. We prove a significant theorem which describes a one-to-one correspondence between the distinguished A-invariant faces of K and the cycles of the permutation induced by A on the extreme rays of ${\text {core}}_K(A)$, provided that the latter cone is nonzero, simplicial. By an interplay between cone-theoretic and graph-theoretic ideas, the extreme rays of the core of a nonnegative matrix are fully described. Characterizations of K-irreducibility or A-primitivity of A are also found in terms of ${\text {core}}_K(A)$. Several equivalent conditions are also given on a matrix with an invariant proper cone so that its spectral radius is an eigenvalue of index one. An equivalent condition in terms of the peripheral spectrum is also found on a real matrix A with the Perron-Schaefer condition for which there exists a proper invariant cone K suchthat ${\text {core}}_K(A)$ is polyhedral, simplicial, or a single ray. A method of producing a large class of invariant proper cones for a matrix with the Perron-Schaefer condition is also offered.References
- George Phillip Barker, On matrices having an invariant cone, Czechoslovak Math. J. 22(97) (1972), 49–68. MR 302672
- George Phillip Barker, Theory of cones, Linear Algebra Appl. 39 (1981), 263–291. MR 625256, DOI 10.1016/0024-3795(81)90310-4
- R. Bru and M. Neumann, Nonnegative Jordan bases, Linear and Multilinear Algebra 23 (1988), no. 2, 95–109. MR 966618, DOI 10.1080/03081088808817861
- Abraham Berman, Michael Neumann, and Ronald J. Stern, Nonnegative matrices in dynamic systems, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1989. A Wiley-Interscience Publication. MR 1019319
- Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544666
- G. P. Barker and Hans Schneider, Algebraic Perron-Frobenius theory, Linear Algebra Appl. 11 (1975), no. 3, 219–233. MR 374171, DOI 10.1016/0024-3795(75)90022-1
- G. P. Barker and R. E. L. Turner, Some observations on the spectra of cone preserving maps, Linear Algebra Appl. 6 (1973), 149–153. MR 325636, DOI 10.1016/0024-3795(73)90013-x
- G. P. Barker, B. S. Tam, and Norbil Davila, A geometric Gordan-Stiemke theorem, Linear Algebra Appl. 61 (1984), 83–89. MR 755250, DOI 10.1016/0024-3795(84)90023-5
- Garrett Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly 74 (1967), 274–276. MR 214605, DOI 10.2307/2316020
- F. F. Bonsall, Sublinear functionals and ideals in partially ordered vector spaces, Proc. London Math. Soc. (3) 4 (1954), 402–418. MR 68752, DOI 10.1112/plms/s3-4.1.402
- Dragomir Ž. Đoković, Quadratic cones invariant under some linear operators, SIAM J. Algebraic Discrete Methods 8 (1987), no. 2, 186–191. MR 881178, DOI 10.1137/0608015
- A. J. Ellis, On faces of compact convex sets and their annihilators, Math. Ann. 184 (1969), 19–24. MR 253012, DOI 10.1007/BF01350611
- Ludwig Elsner, Monotonie und Randspektrum bei vollstetigen Operatoren, Arch. Rational Mech. Anal. 36 (1970), 356–365 (German). MR 251577, DOI 10.1007/BF00282272
- L. Elsner, On matrices leaving invariant a nontrivial convex set, Linear Algebra Appl. 42 (1982), 103–107. MR 656417, DOI 10.1016/0024-3795(82)90141-0
- Shmuel Friedland, Characterizations of the spectral radius of positive operators, Linear Algebra Appl. 134 (1990), 93–105. MR 1060012, DOI 10.1016/0024-3795(90)90008-Z
- Shmuel Friedland, Characterizations of spectral radius of positive operators on $C^*$ algebras, J. Funct. Anal. 97 (1991), no. 1, 64–70. MR 1105655, DOI 10.1016/0022-1236(91)90016-X G. F. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber. Kon. Preuss Akad. Wiss. Berlin, (1912), 456-477; Ges. Abh. 3 (1968), 546-567.
- I. Gohberg, P. Lancaster, and L. Rodman, Invariant subspaces of matrices with applications, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR 873503
- Ulrich Groh, Some observations on the spectra of positive operators on finite-dimensional $C^{\ast }$-algebras, Linear Algebra Appl. 42 (1982), 213–222. MR 656426, DOI 10.1016/0024-3795(82)90150-1
- Daniel Hershkowitz and Hans Schneider, Height bases, level bases, and the equality of the height and the level characteristics of an $M$-matrix, Linear and Multilinear Algebra 25 (1989), no. 2, 149–171. MR 1018774, DOI 10.1080/03081088908817937
- Daniel Hershkowitz and Hans Schneider, Combinatorial bases, derived Jordan sets and the equality of the height and level characteristics of an $M$-matrix, Linear and Multilinear Algebra 29 (1991), no. 1, 21–42. MR 1118353, DOI 10.1080/03081089108818054
- Daniel Hershkowitz and Hans Schneider, On the existence of matrices with prescribed height and level characteristics, Israel J. Math. 75 (1991), no. 1, 105–117. MR 1147293, DOI 10.1007/BF02787184 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960.
- J. G. Horne, On ideals of cone preserving maps, Linear Algebra Appl. 21 (1978), no. 2, 95–109. MR 491811, DOI 10.1016/0024-3795(78)90034-4 R. J. Jang and H. D. Victory, Jr., On nonnegative solvability of linear integral equations, preprint.
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N.S.) 3 (1948), no. 1(23), 3–95 (Russian). MR 0027128
- Peter Lancaster and Miron Tismenetsky, The theory of matrices, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR 792300
- Henryk Minc, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 932967
- Paul Nelson Jr., The structure of a positive linear integral operator, J. London Math. Soc. (2) 8 (1974), 711–718. MR 355695, DOI 10.1112/jlms/s2-8.4.711
- N. J. Pullman, A geometric approach to the theory of nonnegative matrices, Linear Algebra Appl. 4 (1971), 297–312. MR 286816, DOI 10.1016/0024-3795(71)90001-2
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Uriel G. Rothblum, Algebraic eigenspaces of nonnegative matrices, Linear Algebra Appl. 12 (1975), no. 3, 281–292. MR 404298, DOI 10.1016/0024-3795(75)90050-6
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039 —, Topological vector spaces, 4th printing, Springer, New York, 1980.
- H. H. Schaefer, A metric variant of Frobenius’s theorem and some other remarks on positive matrices, Linear Algebra Appl. 42 (1982), 175–182. MR 656423, DOI 10.1016/0024-3795(82)90147-1
- Hans Schneider, Geometric conditions for the existence of positive eigenvalues of matrices, Linear Algebra Appl. 38 (1981), 253–271. MR 636041, DOI 10.1016/0024-3795(81)90025-2
- Hans Schneider, The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: a survey, Proceedings of the symposium on operator theory (Athens, 1985), 1986, pp. 161–189. MR 872282, DOI 10.1016/0024-3795(86)90313-7
- Ronald J. Stern and Henry Wolkowicz, Invariant ellipsoidal cones, Proceedings of the First Conference of the International Linear Algebra Society (Provo, UT, 1989), 1991, pp. 81–106. MR 1102058, DOI 10.1016/0024-3795(91)90161-O
- Ronald J. Stern and Henry Wolkowicz, A note on generalized invariant cones and the Kronecker canonical form, Linear Algebra Appl. 147 (1991), 97–100. MR 1088661, DOI 10.1016/0024-3795(91)90231-K
- Bit Shun Tam, On the distinguished eigenvalues of a cone-preserving map, Linear Algebra Appl. 131 (1990), 17–37. MR 1057062, DOI 10.1016/0024-3795(90)90372-J —, On matrices with invariant proper cones, (in preparation). B. S. Tam and H. Schneider, On the invariant faces of a cone-preserving map, (in preparation).
- Bit Shun Tam and Shiow Fang Wu, On the Collatz-Wielandt sets associated with a cone-preserving map, Linear Algebra Appl. 125 (1989), 77–95. MR 1024484, DOI 10.1016/0024-3795(89)90033-5
- James S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16 (1968), 1208–1222. MR 244284, DOI 10.1137/0116101
- A. I. Veĭtsblit and Yu. I. Lyubich, The boundary spectrum of nonnegative operators, Sibirsk. Mat. Zh. 26 (1985), no. 6, 24–28, 188 (Russian). MR 816500
- H. D. Victory Jr., On linear integral operators with nonnegative kernels, J. Math. Anal. Appl. 89 (1982), no. 2, 420–441. MR 677739, DOI 10.1016/0022-247X(82)90111-1
- H. D. Victory Jr., The structure of the algebraic eigenspaces to the spectral radius of eventually compact, nonnegative integral operators, J. Math. Anal. Appl. 90 (1982), no. 2, 484–516. MR 680174, DOI 10.1016/0022-247X(82)90076-2
- H. D. Victory Jr., On nonnegative solutions of matrix equations, SIAM J. Algebraic Discrete Methods 6 (1985), no. 3, 406–412. MR 791170, DOI 10.1137/0606042
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 479-524
- MSC: Primary 15A48; Secondary 47B65
- DOI: https://doi.org/10.1090/S0002-9947-1994-1242787-6
- MathSciNet review: 1242787