Representable $K$-theory of smooth crossed products by $\textbf {R}$ and $\textbf {Z}$
HTML articles powered by AMS MathViewer
- by N. Christopher Phillips and Larry B. Schweitzer PDF
- Trans. Amer. Math. Soc. 344 (1994), 173-201 Request permission
Abstract:
We show that the Thorn isomorphism and the Pimsner-Voiculescu exact sequence both hold for smooth crossed products of Fréchet algebras by $\mathbb {R}$ and $\mathbb {Z}$ respectively. We also obtain the same results for ${L^1}$-crossed products of Banach algebras by $\mathbb {R}$ and $\mathbb {Z}$.References
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- J.-B. Bost, Principe d’Oka, $K$-théorie et systèmes dynamiques non commutatifs, Invent. Math. 101 (1990), no. 2, 261–333 (French). MR 1062964, DOI 10.1007/BF01231504
- A. Connes, An analogue of the Thom isomorphism for crossed products of a $C^{\ast }$-algebra by an action of $\textbf {R}$, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, DOI 10.1016/0001-8708(81)90056-6 —, Non-commutative differential geometry, Publ. Math. Inst. Hautes Etudes Sci. 62 (1985), 257-360.
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- A. M. Davie, Homotopy in Fréchet algebras, Proc. London Math. Soc. (3) 23 (1971), 31–52. MR 296697, DOI 10.1112/plms/s3-23.1.33
- G. A. Elliott, T. Natsume, and R. Nest, Cyclic cohomology for one-parameter smooth crossed products, Acta Math. 160 (1988), no. 3-4, 285–305. MR 945014, DOI 10.1007/BF02392278
- George A. Elliott, Toshikazu Natsume, and Ryszard Nest, The Heisenberg group and $K$-theory, $K$-Theory 7 (1993), no. 5, 409–428. MR 1255059, DOI 10.1007/bf00961535
- Ryszard Nest, Cyclic cohomology of crossed products with $\textbf {Z}$, J. Funct. Anal. 80 (1988), no. 2, 235–283. MR 961899, DOI 10.1016/0022-1236(88)90001-8 N. C. Phillips, K-theory for Fréchet algebras, Internat. J. Math. 2 (1991), 77-129.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Larry B. Schweitzer, Dense $m$-convex Fréchet subalgebras of operator algebra crossed products by Lie groups, Internat. J. Math. 4 (1993), no. 4, 601–673. MR 1232986, DOI 10.1142/S0129167X93000315
- Larry B. Schweitzer, Spectral invariance of dense subalgebras of operator algebras, Internat. J. Math. 4 (1993), no. 2, 289–317. MR 1217384, DOI 10.1142/S0129167X93000157
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 173-201
- MSC: Primary 46L80; Secondary 19K99, 46H99, 46L87, 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1219733-4
- MathSciNet review: 1219733