## Mean value inequalities in Hilbert space

HTML articles powered by AMS MathViewer

- by F. H. Clarke and Yu. S. Ledyaev PDF
- Trans. Amer. Math. Soc.
**344**(1994), 307-324 Request permission

## Abstract:

We establish a new mean value theorem applicable to lower semi-continuous functions on Hilbert space. A novel feature of the result is its "multidirectionality": it compares the value of a function at a point to its values on a*set*. We then discuss some refinements and consequences of the theorem, including applications to calculus, flow invariance, and generalized solutions to partial differential equations. Résumé. On établit un nouveau théorème de la valeur moyenne qui s’applique aux fonctions semicontinues inférieurement sur un espace de Hilbert. On déduit plusieurs conséquences du résultat portant, par exemple, sur les fonctions monotones et sur les solutions généralisées des équations aux dérivées partielles.

## References

- J. M. Borwein and D. Preiss,
*A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions*, Trans. Amer. Math. Soc.**303**(1987), no. 2, 517–527. MR**902782**, DOI 10.1090/S0002-9947-1987-0902782-7 - Frank H. Clarke,
*Methods of dynamic and nonsmooth optimization*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR**1085948**, DOI 10.1137/1.9781611970142 - F. H. Clarke and Yu. S. Ledyaev,
*Mean value inequalities*, Proc. Amer. Math. Soc.**122**(1994), no. 4, 1075–1083. MR**1212282**, DOI 10.1090/S0002-9939-1994-1212282-4 - F. H. Clarke, R. J. Stern, and P. R. Wolenski,
*Subgradient criteria for monotonicity, the Lipschitz condition, and convexity*, Canad. J. Math.**45**(1993), no. 6, 1167–1183. MR**1247540**, DOI 10.4153/CJM-1993-065-x - Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions,
*User’s guide to viscosity solutions of second order partial differential equations*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), no. 1, 1–67. MR**1118699**, DOI 10.1090/S0273-0979-1992-00266-5 - H. G. Guseĭnov, A. I. Subbotin, and V. N. Ushakov,
*Derivatives for multivalued mappings with applications to game-theoretical problems of control*, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform.**14**(1985), no. 3, 155–167, R1–R14 (English, with Russian summary). With a Russian translation. MR**806060** - Philip D. Loewen,
*Optimal control via nonsmooth analysis*, CRM Proceedings & Lecture Notes, vol. 2, American Mathematical Society, Providence, RI, 1993. MR**1232864**, DOI 10.1090/crmp/002
A. I. Subbotin, - A. I. Subbotin,
*On a property of a subdifferential*, Mat. Sb.**182**(1991), no. 9, 1315–1330 (Russian); English transl., Math. USSR-Sb.**74**(1993), no. 1, 63–78. MR**1133572**, DOI 10.1070/SM1993v074n01ABEH003335
—,

*A generalization of the basic equation of the theory of differential games*, Soviet Math. Dokl.

**22**(1980), 358-362.

*Continuous and discontinuous solutions of boundary value problems for first-order partial differential equations*, Dokl. Akad. Nauk SSSR

**323**(1992), no. 2. (Russian) —,

*Viable characteristics of Hamilton-Jacobi equations*, preprint.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**344**(1994), 307-324 - MSC: Primary 49J52; Secondary 26A24, 47H99, 47N10, 49L25
- DOI: https://doi.org/10.1090/S0002-9947-1994-1227093-8
- MathSciNet review: 1227093