A general view of reflexivity
Author:
Don Hadwin
Journal:
Trans. Amer. Math. Soc. 344 (1994), 325-360
MSC:
Primary 47D25; Secondary 46B28, 46L05, 46M20, 47A99, 47D15
DOI:
https://doi.org/10.1090/S0002-9947-1994-1239639-4
MathSciNet review:
1239639
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Various concepts of reflexivity for an algebra or linear space of operators have been studied by operator theorists and algebraists. This paper contains a very general version of reflexivity based on dual pairs of vector spaces over a Hausdorff field. The special cases include topological, algebraic and approximate reflexivity. In addition general versions of hyperreflexivity and direct integrals are introduced. We prove general versions of many known (and some new) theorems, often with simpler proofs.
-
Y. A. Abramovitch, E. L. Arenson, and A. K. Kitover, Banach $C(K)$-modules and operators preserving disjointness, Pitman Research Notes, no. 277, Wiley, New York, 1992.
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, Strongly reductive operators are normal, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 261–263. MR 433241
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, On strongly reductive algebras, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 6, 633–641. MR 417804
- William Arveson, Notes on extensions of $C^{^ *}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- William Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics, vol. 55, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1984. MR 762819 ---, An invitation to ${C^\ast }$-algebras, Springer-Verlag, New York, 1976.
- Edward A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 64 (1986), no. 357, vi+85. MR 858467, DOI https://doi.org/10.1090/memo/0357
- E. A. Azoff, C. K. Fong, and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), no. 2, 351–366 (1977). MR 448109, DOI https://doi.org/10.1090/S0002-9947-1976-0448109-1
- E. A. Azoff and H. A. Shehada, On separation by families of linear functionals, J. Funct. Anal. 96 (1991), no. 1, 96–116. MR 1093508, DOI https://doi.org/10.1016/0022-1236%2891%2990074-F
- E. A. Azoff and H. A. Shehada, From algebras of normal operators to intersecting hyperplanes, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 11–16. MR 1077415, DOI https://doi.org/10.1016/0022-1236%2891%2990074-f
- Kenneth R. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, J. Functional Analysis 24 (1977), no. 3, 291–302. MR 0454715, DOI https://doi.org/10.1016/0022-1236%2877%2990060-x
- Kenneth R. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), no. 2, 265–273. MR 882114
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI https://doi.org/10.1016/0024-3795%2875%2990099-3
- J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- R. G. Douglas and C. Foiaş, Infinite dimensional versions of a theorem of Brickman-Fillmore, Indiana Univ. Math. J. 25 (1976), no. 4, 315–320. MR 407622, DOI https://doi.org/10.1512/iumj.1976.25.25027
- John Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 6 (1976), no. 171, iii+207. MR 463941, DOI https://doi.org/10.1090/memo/0171
- P. A. Fillmore, On invariant linear manifolds, Proc. Amer. Math. Soc. 41 (1973), 501–505. MR 338804, DOI https://doi.org/10.1090/S0002-9939-1973-0338804-X
- James Glimm, A Stone-Weierstrass theorem for $C^{\ast } $-algebras, Ann. of Math. (2) 72 (1960), 216–244. MR 116210, DOI https://doi.org/10.2307/1970133
- T. A. Gillespie, Boolean algebras of projections and reflexive algebras of operators, Proc. London Math. Soc. (3) 37 (1978), no. 1, 56–74. MR 482360, DOI https://doi.org/10.1112/plms/s3-37.1.56
- Donald W. Hadwin, An asymptotic double commutant theorem for $C^{\ast } $-algebras, Trans. Amer. Math. Soc. 244 (1978), 273–297. MR 506620, DOI https://doi.org/10.1090/S0002-9947-1978-0506620-0
- Don Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra 14 (1983), no. 3, 225–233. MR 718951, DOI https://doi.org/10.1080/03081088308817559
- Don Hadwin, Approximately hyperreflexive algebras, J. Operator Theory 28 (1992), no. 1, 51–64. MR 1259915
- Don Hadwin, A reflexivity theorem for subspaces of Calkin algebras, J. Funct. Anal. 123 (1994), no. 1, 1–11. MR 1279293, DOI https://doi.org/10.1006/jfan.1994.1080
- D. W. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), no. 1, 3–23. MR 650190
- D. W. Hadwin and E. A. Nordgren, Erratum: “Subalgebras of reflexive algebras” [J. Operator Theory 7 (1982), no. 1, 3–23; MR0650190 (83f:47033)], J. Operator Theory 15 (1986), no. 1, 203–204. MR 816239
- Don Hadwin and Eric A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), no. 1-2, 181–197. MR 1124956
- Don Hadwin, Eric Nordgren, Heydar Radjavi, and Peter Rosenthal, Orbit-reflexive operators, J. London Math. Soc. (2) 34 (1986), no. 1, 111–119. MR 859152, DOI https://doi.org/10.1112/jlms/s2-34.1.111
- D. W. Hadwin and S.-C. Ong, On algebraic and para-reflexivity, J. Operator Theory 17 (1987), no. 1, 23–31. MR 873461
- Don Hadwin and Mehmet Orhon, Reflexivity and approximate reflexivity for bounded Boolean algebras of projections, J. Funct. Anal. 87 (1989), no. 2, 348–358. MR 1026857, DOI https://doi.org/10.1016/0022-1236%2889%2990014-1
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI https://doi.org/10.1090/S0002-9904-1970-12502-2
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI https://doi.org/10.4064/fm-87-1-53-72
- Jon Kraus and David R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. (3) 53 (1986), no. 2, 340–356. MR 850224, DOI https://doi.org/10.1112/plms/s3-53.2.340
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664
- David R. Larson, Annihilators of operator algebras, Invariant subspaces and other topics (Timişoara/Herculane, 1981), Operator Theory: Adv. Appl., vol. 6, Birkhäuser, Basel-Boston, Mass., 1982, pp. 119–130. MR 685459
- David R. Larson, Hyperreflexivity and a dual product construction, Trans. Amer. Math. Soc. 294 (1986), no. 1, 79–88. MR 819936, DOI https://doi.org/10.1090/S0002-9947-1986-0819936-X
- David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), no. 2, 283–299. MR 935008, DOI https://doi.org/10.2307/2374503 A. I. Loginov and V. S. Shulman, On hereditary and intermediate reflexivity of ${W^\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 396 (1975), 1260-1273; Math. USSR Izv. 9 (1975), 1189-1201. (Russian)
- W. Mlak, Operator valued representations of function algebras, Linear operators and approximation, II (Proc. Conf., Oberwolfach Math. Res. Inst., Oberwolfach, 1974) Birkhäuser, Basel, 1974, pp. 49–79. Internat. Ser. Numer. Math., Vol. 25. MR 0394220
- Robert F. Olin and James E. Thomson, Algebras of subnormal operators, J. Functional Analysis 37 (1980), no. 3, 271–301. MR 581424, DOI https://doi.org/10.1016/0022-1236%2880%2990045-2 M. Orhon, Locally cyclic representations of $C(K)$, preprint.
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI https://doi.org/10.4064/sm-19-2-209-228
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77. MR 0367682
- C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988), no. 1, 1–40. MR 959046, DOI https://doi.org/10.1007/BF02765019 A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Univ. Press, Cambridge, 1966.
- Shlomo Rosenoer, Distance estimates for von Neumann algebras, Proc. Amer. Math. Soc. 86 (1982), no. 2, 248–252. MR 667283, DOI https://doi.org/10.1090/S0002-9939-1982-0667283-3
- M.-F. Sainte-Beuve, On the extension of von Neumann-Aumann’s theorem, J. Functional Analysis 17 (1974), 112–129. MR 0374364, DOI https://doi.org/10.1016/0022-1236%2874%2990008-1
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D25, 46B28, 46L05, 46M20, 47A99, 47D15
Retrieve articles in all journals with MSC: 47D25, 46B28, 46L05, 46M20, 47A99, 47D15
Additional Information
Article copyright:
© Copyright 1994
American Mathematical Society