A general view of reflexivity
HTML articles powered by AMS MathViewer
- by Don Hadwin
- Trans. Amer. Math. Soc. 344 (1994), 325-360
- DOI: https://doi.org/10.1090/S0002-9947-1994-1239639-4
- PDF | Request permission
Abstract:
Various concepts of reflexivity for an algebra or linear space of operators have been studied by operator theorists and algebraists. This paper contains a very general version of reflexivity based on dual pairs of vector spaces over a Hausdorff field. The special cases include topological, algebraic and approximate reflexivity. In addition general versions of hyperreflexivity and direct integrals are introduced. We prove general versions of many known (and some new) theorems, often with simpler proofs.References
- Y. A. Abramovitch, E. L. Arenson, and A. K. Kitover, Banach $C(K)$-modules and operators preserving disjointness, Pitman Research Notes, no. 277, Wiley, New York, 1992.
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, Strongly reductive operators are normal, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 261–263. MR 433241
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, On strongly reductive algebras, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 6, 633–641. MR 417804
- William Arveson, Notes on extensions of $C^{^*}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- William Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics, vol. 55, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1984. MR 762819, DOI 10.1090/cbms/055 —, An invitation to ${C^\ast }$-algebras, Springer-Verlag, New York, 1976.
- Edward A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 64 (1986), no. 357, vi+85. MR 858467, DOI 10.1090/memo/0357
- E. A. Azoff, C. K. Fong, and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), no. 2, 351–366 (1977). MR 448109, DOI 10.1090/S0002-9947-1976-0448109-1
- E. A. Azoff and H. A. Shehada, On separation by families of linear functionals, J. Funct. Anal. 96 (1991), no. 1, 96–116. MR 1093508, DOI 10.1016/0022-1236(91)90074-F
- E. A. Azoff and H. A. Shehada, From algebras of normal operators to intersecting hyperplanes, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 11–16. MR 1077415, DOI 10.1090/pspum/051.2/1077415
- Kenneth R. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, J. Functional Analysis 24 (1977), no. 3, 291–302. MR 0454715, DOI 10.1016/0022-1236(77)90060-x
- Kenneth R. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), no. 2, 265–273. MR 882114
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI 10.1016/0024-3795(75)90099-3
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- R. G. Douglas and C. Foiaş, Infinite dimensional versions of a theorem of Brickman-Fillmore, Indiana Univ. Math. J. 25 (1976), no. 4, 315–320. MR 407622, DOI 10.1512/iumj.1976.25.25027
- John Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 6 (1976), no. 171, iii+207. MR 463941, DOI 10.1090/memo/0171
- P. A. Fillmore, On invariant linear manifolds, Proc. Amer. Math. Soc. 41 (1973), 501–505. MR 338804, DOI 10.1090/S0002-9939-1973-0338804-X
- James Glimm, A Stone-Weierstrass theorem for $C^{\ast }$-algebras, Ann. of Math. (2) 72 (1960), 216–244. MR 116210, DOI 10.2307/1970133
- T. A. Gillespie, Boolean algebras of projections and reflexive algebras of operators, Proc. London Math. Soc. (3) 37 (1978), no. 1, 56–74. MR 482360, DOI 10.1112/plms/s3-37.1.56
- Donald W. Hadwin, An asymptotic double commutant theorem for $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 244 (1978), 273–297. MR 506620, DOI 10.1090/S0002-9947-1978-0506620-0
- Don Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra 14 (1983), no. 3, 225–233. MR 718951, DOI 10.1080/03081088308817559
- Don Hadwin, Approximately hyperreflexive algebras, J. Operator Theory 28 (1992), no. 1, 51–64. MR 1259915
- Don Hadwin, A reflexivity theorem for subspaces of Calkin algebras, J. Funct. Anal. 123 (1994), no. 1, 1–11. MR 1279293, DOI 10.1006/jfan.1994.1080
- D. W. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), no. 1, 3–23. MR 650190
- D. W. Hadwin and E. A. Nordgren, Erratum: “Subalgebras of reflexive algebras” [J. Operator Theory 7 (1982), no. 1, 3–23; MR0650190 (83f:47033)], J. Operator Theory 15 (1986), no. 1, 203–204. MR 816239
- Don Hadwin and Eric A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), no. 1-2, 181–197. MR 1124956
- Don Hadwin, Eric Nordgren, Heydar Radjavi, and Peter Rosenthal, Orbit-reflexive operators, J. London Math. Soc. (2) 34 (1986), no. 1, 111–119. MR 859152, DOI 10.1112/jlms/s2-34.1.111
- D. W. Hadwin and S.-C. Ong, On algebraic and para-reflexivity, J. Operator Theory 17 (1987), no. 1, 23–31. MR 873461
- Don Hadwin and Mehmet Orhon, Reflexivity and approximate reflexivity for bounded Boolean algebras of projections, J. Funct. Anal. 87 (1989), no. 2, 348–358. MR 1026857, DOI 10.1016/0022-1236(89)90014-1
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- Jon Kraus and David R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. (3) 53 (1986), no. 2, 340–356. MR 850224, DOI 10.1112/plms/s3-53.2.340
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664
- David R. Larson, Annihilators of operator algebras, Invariant subspaces and other topics (Timişoara/Herculane, 1981), Operator Theory: Advances and Applications, vol. 6, Birkhäuser, Basel-Boston, Mass., 1982, pp. 119–130. MR 685459
- David R. Larson, Hyperreflexivity and a dual product construction, Trans. Amer. Math. Soc. 294 (1986), no. 1, 79–88. MR 819936, DOI 10.1090/S0002-9947-1986-0819936-X
- David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), no. 2, 283–299. MR 935008, DOI 10.2307/2374503 A. I. Loginov and V. S. Shulman, On hereditary and intermediate reflexivity of ${W^\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 396 (1975), 1260-1273; Math. USSR Izv. 9 (1975), 1189-1201. (Russian)
- W. Mlak, Operator valued representations of function algebras, Linear operators and approximation, II (Proc. Conf., Math. Res. Inst., Oberwolfach, 1974) Internat. Ser. Numer. Math., Vol. 25, Birkhäuser, Basel, 1974, pp. 49–79. MR 0394220
- Robert F. Olin and James E. Thomson, Algebras of subnormal operators, J. Functional Analysis 37 (1980), no. 3, 271–301. MR 581424, DOI 10.1016/0022-1236(80)90045-2 M. Orhon, Locally cyclic representations of $C(K)$, preprint.
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI 10.4064/sm-19-2-209-228
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988), no. 1, 1–40. MR 959046, DOI 10.1007/BF02765019 A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Univ. Press, Cambridge, 1966.
- Shlomo Rosenoer, Distance estimates for von Neumann algebras, Proc. Amer. Math. Soc. 86 (1982), no. 2, 248–252. MR 667283, DOI 10.1090/S0002-9939-1982-0667283-3
- M.-F. Sainte-Beuve, On the extension of von Neumann-Aumann’s theorem, J. Functional Analysis 17 (1974), 112–129. MR 0374364, DOI 10.1016/0022-1236(74)90008-1
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 325-360
- MSC: Primary 47D25; Secondary 46B28, 46L05, 46M20, 47A99, 47D15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1239639-4
- MathSciNet review: 1239639