A $4$-dimensional Kleinian group
HTML articles powered by AMS MathViewer
- by B. H. Bowditch and G. Mess
- Trans. Amer. Math. Soc. 344 (1994), 391-405
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240944-6
- PDF | Request permission
Abstract:
We give an example of a 4-dimensional Kleinian group which is finitely generated but not finitely presented, and is a subgroup of a cocompact Kleinian group.References
- Lars V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413–429. MR 167618, DOI 10.2307/2373173
- B. N. Apanasov and A. V. Tetenov, Nontrivial cobordisms with geometrically finite hyperbolic structures, J. Differential Geom. 28 (1988), no. 3, 407–422. MR 965222
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- M. Bestvina and D. Cooper, A wild Cantor set as the limit set of a conformal group action on $S^3$, Proc. Amer. Math. Soc. 99 (1987), no. 4, 623–626. MR 877028, DOI 10.1090/S0002-9939-1987-0877028-4
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Michael W. Davis, A hyperbolic $4$-manifold, Proc. Amer. Math. Soc. 93 (1985), no. 2, 325–328. MR 770546, DOI 10.1090/S0002-9939-1985-0770546-7 M. Feighn and D. McCullough, Finiteness theorems for 3-manifolds with boundary, Amer. J. Math. 109 (1987), 1155-1169; Correction, ibid. 112 (1990), 41-45.
- Mark Feighn and Geoffrey Mess, Conjugacy classes of finite subgroups of Kleinian groups, Amer. J. Math. 113 (1991), no. 1, 179–188. MR 1087807, DOI 10.2307/2374827
- M. Gromov, H. B. Lawson Jr., and W. Thurston, Hyperbolic $4$-manifolds and conformally flat $3$-manifolds, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 27–45 (1989). MR 1001446
- M. È. Kapovich, Flat conformal structures on three-dimensional manifolds: the existence problem. I, Sibirsk. Mat. Zh. 30 (1989), no. 5, 60–73, 216 (Russian); English transl., Siberian Math. J. 30 (1989), no. 5, 712–722 (1990). MR 1025290, DOI 10.1007/BF00971261 —, On absence of Sullivan’s cusp finiteness theorem in higher dimensions, preprint I.H.E.S. (1990).
- Michael Kapovich and Leonid Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991), no. 1, 83–91. MR 1114093, DOI 10.1016/0166-8641(91)90060-Y
- Nicolaas H. Kuiper, Hyperbolic $4$-manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 47–76 (1989). MR 1001447
- Ravi S. Kulkarni and Peter B. Shalen, On Ahlfors’ finiteness theorem, Adv. Math. 76 (1989), no. 2, 155–169. MR 1013665, DOI 10.1016/0001-8708(89)90046-7
- D. D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc. 19 (1987), no. 5, 481–484. MR 898729, DOI 10.1112/blms/19.5.481
- Shigenori Matsumoto, Foundations of flat conformal structure, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 167–261. MR 1208312, DOI 10.2969/aspm/02010167
- V. V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevskiĭ spaces, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 113–142, 240 (Russian). MR 607579
- L. Potyagaĭlo, The problem of finiteness for Kleinian groups in $3$-space, Knots 90 (Osaka, 1990) de Gruyter, Berlin, 1992, pp. 619–623. MR 1177449 —, Finitely generated Kleinian groups in 3-space and 3-manifolds of infinite topological type, Trans. Amer. Math. Soc. (to appear).
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- Dennis Sullivan, A finiteness theorem for cusps, Acta Math. 147 (1981), no. 3-4, 289–299. MR 639042, DOI 10.1007/BF02392876 —, Travaux de Thurston sur les groupes quasifuchsiens et les variétés hyperboliques de dimension 3 fibrées sur ${S^1}$, Lecture Notes in Math., vol. 842, Springer Verlag, 1980. W. P. Thurston, The geometry and topology of three-manifolds, Notes, Princeton Univ. Math., Department 1979.
- A. Yu. Vesnin, Three-dimensional hyperbolic manifolds of Löbell type, Sibirsk. Mat. Zh. 28 (1987), no. 5, 50–53 (Russian). MR 924975
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 391-405
- MSC: Primary 57S30; Secondary 20H10, 30F40, 57M50
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240944-6
- MathSciNet review: 1240944