Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


The Cauchy problem in $\textbf {C}^ N$ for linear second order partial differential equations with data on a quadric surface
HTML articles powered by AMS MathViewer

by Gunnar Johnsson PDF
Trans. Amer. Math. Soc. 344 (1994), 1-48 Request permission


By means of a method developed essentially by Leray some global existence results are obtained for the problem referred to in the title. The partial differential equations are required to have constant principal part and the initial surface to be irreducible and not everywhere characteristic. The Cauchy data are assumed to be given by entire functions. Under these conditions the location of all possible singularities of solutions are determined. The sets of singularities can be divided into two types, K- and L-singularities. K, the set of K-singularities, is the global version of the characteristic tangent defined by Leray. The L-sets are here quadric surfaces which, in contrast to the Ksets, allow unbounded singularities. The L-sets are in turn divided into three types: initial, asymptotic, and latent singularities. The initial singularities appear when the characteristic points of the initial surface are exceptional according to Leray’s local theory. These sets of singularity intersect the initial surface at characteristic points. The asymptotic case, where the set of singularities does not cut the initial surface, can be viewed as projectively equivalent to the initial case, the intersection taking place at infinite characteristic points. Finally the latent singularities are sets which intersect the initial surface, but where the solutions do not develop singularities initially. In the case of the Laplace equation with data on a real quadric surface it is shown that the K-singularities and the asymptotic singularities occur on the classical focal sets defined by Poncelet, PlĂŒcker, Darboux et al. There are also latent singularities appearing in coordinate subspaces of ${\mathbb {R}^N}$. As a corollary a new proof is given of the fact that ellipsoids have the Pompeiu property.
  • Leon Brown, Bertram M. Schreiber, and B. Alan Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 125–154 (English, with French summary). MR 352492, DOI 10.5802/aif.474
  • H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer VerĂ€nderlichen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 51, Springer-Verlag, Berlin-New York, 1970 (German). Zweite, erweiterte Auflage; Herausgegeben von R. Remmert. Unter Mitarbeit von W. Barth, O. Forster, H. Holmann, W. Kaup, H. Kerner, H.-J. Reiffen, G. Scheja und K. Spallek. MR 0271391, DOI 10.1007/978-3-642-62004-1
  • Carlos Alberto Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128–144. MR 583635, DOI 10.1007/BF02797683
  • Philip J. Davis, The Schwarz function and its applications, The Carus Mathematical Monographs, No. 17, Mathematical Association of America, Buffalo, N.Y., 1974. MR 0407252, DOI 10.5948/9781614440178
  • G. Darboux, Principes de gĂ©omĂ©trie analytique, Gauthier-Villars, Paris, 1917. E. Delassus, Sur les Ă©quations linĂ©aires aux dĂ©rivĂ©es partielles Ă  caractĂ©ristiques rĂ©elles, Ann. Sci. Ecole Norm. Sup (3) 12 (1895).
  • Jacques Dunau, Un problĂšme de Cauchy caractĂ©ristique, J. Math. Pures Appl. (9) 69 (1990), no. 3, 369–402 (French). MR 1070484
  • Peter Ebenfelt, Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem, Complex Variables Theory Appl. 20 (1992), no. 1-4, 75–91. MR 1284354, DOI 10.1080/17476939208814588
  • L. GĂ„rding, Partial differential equations : problems and uniformization in Cauchy’s problem, Lectures on Modern Math., vol. II. (T. L. Sauty, ed.), Wiley, New York, 1964.
  • Lars Gȧrding, Takeshi Kotake, and Jean Leray, Uniformisation et dĂ©veloppement asymptotique de la solution du problĂšme de Cauchy linĂ©aire, Ă  donnĂ©es holomorphes; analogie avec la thĂ©orie des ondes asymptotiques et approchĂ©es (ProblĂšme de Cauchy, I bis et VI), Bull. Soc. Math. France 92 (1964), 263–361 (French). MR 196280, DOI 10.24033/bsmf.1611
  • F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, HochschulbĂŒcher fĂŒr Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
  • H. Grauert and K. Fritzsche, Several complex variables, Graduate Texts in Mathematics, Vol. 38, Springer-Verlag, New York-Heidelberg, 1976. Translated from the German. MR 0414912, DOI 10.1007/978-1-4612-9874-8
  • Y. Hamada, Les singularitĂ©s des solutions du problĂšme de Cauchy Ă  donnĂ©es holomorphes, Pitman Res. Notes Math. Ser., vol. 183, Longman, Harlow, 1988.
  • F. Hartogs, Über die aus den singulĂ€ren Stellen einer analytischen Funktion mehrerer VerĂ€nderlichen bestehenden Gebilde, Acta Math. 32 (1909), no. 1, 57–79 (German). MR 1555046, DOI 10.1007/BF02403211
  • M. HervĂ©, Several complex variables, Oxford, Bombay, 1963. G. Herglotz, Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, Gekrönte Preisschr. Jablonowskischen Gesellsch. Leipzig, 1914, reproduced in Gustav Herglotz—Gesammelte Schriften, Vandenhoek and Ruprecht, Göttingen, 1979. L. Hörmander, Linear partial differential operators, Springer, Berlin, 1963.
  • Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
  • G. Johnsson, Global existence results for linear analytic partial differential equations, TRITA-MAT-1989-12. L. Karp, Construction of quadrature domains in ${\mathbb {R}^n}$ from quadrature domains in ${\mathbb {R}^2}$, preprint, 1990.
  • Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 0222317, DOI 10.1007/978-3-642-86748-4
  • D. Khavinson, Singularities of harmonic functions in $\textbf {C}^n$, Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 207–217. MR 1128595, DOI 10.1090/pspum/052.3/1128595
  • D. Khavinson and H. S. Shapiro, The Schwarz potential in ${\mathbb {R}^n}$ and Cauchy’s problem for the Laplace equation, TRITA-MAT-1989-36. —, Dirichlet’s problem when the data is an entire function, TRITA-MAT-1991-19.
  • H.-O. Kreiss, Numerical methods for hyperbolic partial differential equations, Numerical methods for partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978) Publ. Math. Res. Center Univ. Wisconsin, vol. 42, Academic Press, New York-London, 1979, pp. 213–254. MR 558220
  • Jean Leray, ProblĂšme de Cauchy. I. Uniformisation de la solution du problĂšme linĂ©aire analytique de Cauchy prĂšs de la variĂ©tĂ© qui porte les donnĂ©es de Cauchy, Bull. Soc. Math. France 85 (1957), 389–429 (French). MR 103328, DOI 10.24033/bsmf.1493
  • A. Wangerin, ed., Über die Anziehung homogener Ellipsoide, Abhandlungen von Laplace (1782), Ivory (1809), Gauss (1813), Chasles (1838) und Dirichlet (1839), Ostwalds Klassiker der Exakt. Wiss., Nr. 77, Leipzig.
  • Masatake Miyake, Global and local Goursat problems in a class of holomorphic or partially holomorphic functions, J. Differential Equations 39 (1981), no. 3, 445–463. MR 612597, DOI 10.1016/0022-0396(81)90068-1
  • Jan Persson, On the local and global non-characteristic Cauchy problem when the solutions are holomorphic functions or analytic functionals or analytic functionals in the space variables, Ark. Mat. 9 (1971), 171–180 (1971). MR 318702, DOI 10.1007/BF02383643
  • J. PlĂŒcker, Ueber solche Punkte, Kie bei Curven eine höhern Ordnung als den zweiten den Brennpunkten der Kegelschnitte entsprechen, Crelle J. 10 (1832), 84-91.
  • B. Yu. Sternin and V. E. Shatalov, An integral transformation of complex analytic functions, Dokl. Akad. Nauk SSSR 280 (1985), no. 3, 553–556 (Russian). MR 775923
  • B. Yu. Sternin and V. E. Shatalov, Differential equations on complex-analytic manifolds and the Maslov canonical operator, Uspekhi Mat. Nauk 43 (1988), no. 3(261), 99–124, 271, 272 (Russian, with English summary); English transl., Russian Math. Surveys 43 (1988), no. 3, 117–148. MR 955775, DOI 10.1070/RM1988v043n03ABEH001749
  • —, Notes on problem of balyage in ${\mathbb {R}^n}$, preprint, 1990.
  • B. Yu. Sternin and V. E. Shatalov, Continuation of solutions of elliptic equations and localization of singularities, Nonlinear operators in global analysis (Russian), Novoe Global. Anal., Voronezh. Gos. Univ., Voronezh, 1991, pp. 153–156, 165 (Russian). MR 1167026, DOI 10.1023/A:1023307600250
  • Harold S. Shapiro, The Schwarz function and its generalization to higher dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 9, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1160990
  • —, Global aspects of Cauchy’s problem for the Laplace operator, preprint, 1989. H. Shahgholian, On Newtonian potential of a heterogeneous ellipsoid, TRITA-MAT-1988-10. B. L. van der Waerden, Algebra I, Springer, Berlin, 1964.
  • Stephen A. Williams, A partial solution of the Pompeiu problem, Math. Ann. 223 (1976), no. 2, 183–190. MR 414904, DOI 10.1007/BF01360881
  • Lawrence Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 237–254. MR 348084, DOI 10.1007/BF00250628
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35A20, 35B60, 35G10
  • Retrieve articles in all journals with MSC: 35A20, 35B60, 35G10
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 344 (1994), 1-48
  • MSC: Primary 35A20; Secondary 35B60, 35G10
  • DOI:
  • MathSciNet review: 1242782