A differential operator for symmetric functions and the combinatorics of multiplying transpositions
HTML articles powered by AMS MathViewer
- by I. P. Goulden PDF
- Trans. Amer. Math. Soc. 344 (1994), 421-440 Request permission
Abstract:
By means of irreducible characters for the symmetric group, formulas have previously been given for the number of ways of writing permutations in a given conjugacy class as products of transpositions. These formulas are alternating sums of binomial coefficients and powers of integers. Combinatorial proofs are obtained in this paper by analyzing the action of a partial differential operator for symmetric functions.References
- François Bédard and Alain Goupil, The poset of conjugacy classes and decomposition of products in the symmetric group, Canad. Math. Bull. 35 (1992), no. 2, 152–160. MR 1165162, DOI 10.4153/CMB-1992-022-9
- Edward A. Bertram and Victor K. Wei, Decomposing a permutation into two large cycles: an enumeration, SIAM J. Algebraic Discrete Methods 1 (1980), no. 4, 450–461. MR 593854, DOI 10.1137/0601050
- G. Boccara, Nombre de représentations d’une permutation comme produit de deux cycles de longueurs données, Discrete Math. 29 (1980), no. 2, 105–134 (French, with English summary). MR 558612, DOI 10.1016/0012-365X(80)90001-1
- Martin Burrow, Representation theory of finite groups, Academic Press, New York-London, 1965. MR 0231924 A. Cayley, A theorem on trees, Quart. J. Math. Oxford 23 (1889), 376-378.
- József Dénes, The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 63–71 (English, with Russian and Hungarian summaries). MR 115936
- J. Dénes, A generalization of a result of A. Hurwitz, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam-New York, 1981, pp. 85–93. MR 642034
- I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota. MR 702512
- I. P. Goulden and D. M. Jackson, The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European J. Combin. 13 (1992), no. 5, 357–365. MR 1181077, DOI 10.1016/S0195-6698(05)80015-0
- I. P. Goulden and S. Pepper, Labelled trees and factorizations of a cycle into transpositions, Discrete Math. 113 (1993), no. 1-3, 263–268. MR 1212884, DOI 10.1016/0012-365X(93)90522-U
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469 —, Über die Anzahl der Riemannschen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1902), 53-66.
- D. M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Trans. Amer. Math. Soc. 299 (1987), no. 2, 785–801. MR 869231, DOI 10.1090/S0002-9947-1987-0869231-9
- D. M. Jackson, Counting semiregular permutations which are products of a full cycle and an involution, Trans. Amer. Math. Soc. 305 (1988), no. 1, 317–331. MR 920161, DOI 10.1090/S0002-9947-1988-0920161-4
- D. M. Jackson, Some combinatorial problems associated with products of conjugacy classes of the symmetric group, J. Combin. Theory Ser. A 49 (1988), no. 2, 363–369. MR 964394, DOI 10.1016/0097-3165(88)90062-3 D. E. Littlewood, The theory of group characters, 2nd ed., Oxford Univ. Press, London, 1950.
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Paul Moszkowski, A solution to a problem of Dénes: a bijection between trees and factorizations of cyclic permutations, European J. Combin. 10 (1989), no. 1, 13–16. MR 977175, DOI 10.1016/S0195-6698(89)80028-9
- Richard P. Stanley, Factorization of permutations into $n$-cycles, Discrete Math. 37 (1981), no. 2-3, 255–262. MR 676430, DOI 10.1016/0012-365X(81)90224-7
- David W. Walkup, How many ways can a permutation be factored into two $n$-cycles?, Discrete Math. 28 (1979), no. 3, 315–319. MR 548630, DOI 10.1016/0012-365X(79)90138-9
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 421-440
- MSC: Primary 20C30; Secondary 05E10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1249468-3
- MathSciNet review: 1249468