
transactions of the
american mathematical society
Volume 344, Number 1, July 1994

A BANACH SPACE NOT CONTAINING c0, h
OR A REFLEXIVE SUBSPACE

W. T. GOWERS

Abstract. An infinite-dimensional Banach space is constructed which does not

contain Co, l\ or an infinite-dimensional reflexive subspace. In fact, it does not

even contain lx or an infinite-dimensional subspace with a separable dual.

An old result of James [2] asserts that a Banach space with an unconditional

basis is either reflexive or has a subspace isomorphic to one of Co or lx. This

suggests a natural problem, which has been considered by several authors: does

every Banach space contain c0 > h or a reflexive subspace? James's result yields

a positive answer for any space containing an unconditional basic sequence,

so the problem was thrown into sharper focus by the recent construction [1]

of a space without one. In this paper we adapt the construction of [1]. We

shall draw attention to the differences and similarities later. We also show that

our space has no subspace with a separable dual. Since a theorem of Johnson

and Rosenthal [5] states that a subspace of a separable dual space either has a

reflexive subspace or a nonseparable dual, this is only a slightly stronger result.

However, our proof is direct.

This second statement should be compared with results of James [4] and

Lindenstrauss and Stegall [6]. They independently constructed separable spaces

not containing lx but with nonseparable duals, answering in the negative a

question of Banach. The space in this paper can therefore be regarded as a

hereditary version of those spaces. (This is true, to some extent, not just of the

result, but also of the construction.)
The paper is self-contained, but will be easier to read by those familiar with

the techniques of [1] and indeed of [8], Schlumprecht's construction of an arbi-

trarily distortable space, which lies at the heart of the construction here as well

as that of [1]. The main difficulty of this result is the proof of Lemma 4 below.

This proof is postponed until after the lemma is used to prove the main result.

Thus the reader who wishes to understand the main ideas of the construction

without wading through pages of technical argument can simply stop reading

when the proof of Lemma 4 starts.

We shall begin by giving the definition of our norm, which is fairly compli-

cated.
First, let /:R-»R be the function x >-, v/log2(x+ 1), and note that / has

the following properties:
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(i) /(l) = 1 and f(x) < x for every x > 1 ;
(ii) / is strictly increasing and tends to infinity;

(iii) limx^00x~qf(x) = 0 for every q > 0 ;

(iv) the function x/(x)~2 is concave and nondecreasing;

(v) f(xy) < f(x)f(y) for every x, y > 1.
Let coo be the vector space of sequences of real numbers all but finitely many

of which are zero, and let the standard basis of coo be written ei, e2, ... . An
interval E c N is a subset of the form {a, a + I, a + 2, ... , b} for some

a < b, a, b e N. Given an interval E, let the letter E also stand for the

projection from Coo to c0o defined by *P°11 a,e; i-> J2i€Eaie¡. Given two
intervals E, F c N, write E < F if max E < min F . The support of a vector

x = Y?Hixiei € coo is supp(x) = {i: x, ^ 0}. This is always a finite set.
We define the range of a vector, written ran(x), to be the smallest interval

containing supp(x). Given x, y e coo, we shall write x < y for the statement

ran(x) < ran(y). If xx < - • • < Xff, then we say that xx, ... , x^ are successive.

Let Q be the subset of coo consisting of sequences of rationals in the interval

[-1, 1]. Let J c N be a set such that, if m < n and m, n e J, then

log log log log log« > 1000m. Let us also suppose that f(j) > 10103 for every
j e J. Let a be an injection from the set of finite sequences of successive

elements of Q to J .
Let X = (coo, || • II) De anY normed space such that the standard basis is

bimonotone. For every m e N, define A*m(X) to be the set of linear functional

on X of the form f(m)~x(x\ H-+ x^,), where x\,..., x„ are successive

members of coo and ||x*|| < 1 for each i. A special sequence of functionals

on X is defined to be a sequence of the form z\, ... , z*M, where M e N,

the z* are successive, z\ g^nQ for some m e J and, for 2 < i < M,
we have z*¡ e A*,,.     T, ,nQ.  A special functional on X is defined to be

a functional of the form E(z* -\-h z*M) such that z*, ... , z*M is a special
sequence. To any special sequence z\, ... , z*M we can associate a sequence of

integers nx, ... , n\¡ e J such that z* e A*ni and n, = a(z\, ... , z*_,) for

2 < i < M. The first number nx is not necessarily uniquely determined, but

n2, ... ,nM certainly are. Given a special functional z* = E(z* H-i- z*M),

we say that Z c J is an associated set for z* if we can pick such a sequence

tl\,..., n\f associated to the sequence z\, ... , z*M and Z consists of those
n¡ for which Fnran(z*) ^ 0 . A collection of special functionals w¡, ... , w^

is called disjoint if we can choose for them disjoint associated sets Z\,..., Zu.
We are now ready to define our norm. We shall define it as the limit of a

sequence of norms on coo • First, let A^ be defined by ||x||x0 = ||*||oo • For

n > 1, define X„ by

IMk = IWk-, V sup if(N)~x ¿ H^xIIjt.-, :N>2,Ex<-<En\

(M

£i**(*)l2
i=i

where the second supremum ranges over all sequences x,*, ... , x*M of disjoint

special functionals on Xn_x .

Now we claim that ||x||a-„ < IMIi for every n . This is certainly true when
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n = 0. If it is true for n = k then ||x*||x* > IMIU for every x* e coo •

It follows that ||x*||oo < f(m)~x for every x* e A*m(Xk). Given a sequence

x\, ... , x*M of disjoint special functionals on Xk , we can find disjoint associ-

ated sets Zx, ... , Zm C J. We know that Hx*^ < /(minZ,)-1, so

(M \x/2      M M

E i** wi2    ^ E i**(*)i ^ iwii E n**iu
;=1 / i=l (=1

<WiE/œ_1^Wi-
ye/

It follows easily that || • ||zt+, is also dominated by || • ||i.
It is also clear that if X and Y are two normed spaces on coo such that

I Mix < IM|y f°r every x e Coo, then every sequence of disjoint special func-

tionals on X is also such a sequence on Y. This implies that || • \\x0, || • ||x,,
|| • ||jf2, ... is an increasing sequence of norms. Since they are bounded above

by || • ||i, they tend to a limit, giving a space X - (coo, II • II) • Strictly speaking,
we will be interested in the completion of this space, but it is more convenient

for the time being to consider the incomplete space X.
It is easy to check that every x e X satisfies the equation

í N
IMI = IMU V sup I f(N)~x E \\EiX\\ :N>2,EX<-<EN

I ;=1

IM \ X>2

vsupiEM'WI2]

where the second supremum is over all sequences x\, ... , x*M of disjoint spe-

cial functionals on X. Note in particular that the standard basis of X is

bimonotone.

We shall now state and prove some lemmas about X. The first three are

very similar to lemmas proved by Schlumprecht and slightly adapted in [1].
First, we say that x e X is an l^-average with constant C if ||x|| = 1 and

x = 53jL, x, for some sequence of successive nonzero vectors xx, ... , x„ such

that ||x,|| < Cn~x for every /'. An l"+-vector is simply a nonzero multiple of an

/"+-average. That is, it is a vector x that can be written as £"=i x, for some

sequence of successive nonzero vectors Xi, ... , x„ such that ||x,|| < Cw_1||x||

for each i.

Lemma 1. For every n e N and C > 1 there exists N such that, for any

sequence xx,..., xn of successive nonzero vectors in X, the subspace generated

by xx,... , xjv contains an l^-average with constant C.

Proof. Suppose the result is false. Without loss of generality the x, all have

norm one. Let k be an integer such that klogC > logf(nk) (such an in-

teger exists because of property (iii) of the function /), let 7Y = nk and let

x = ¿Zt?=\ xi ■ For every 0 < i < k and every 1 < / < nk~', let x(i, j) —

T,Zu-i)n'+iXt' Thus X(°>J) = xj, x(k,l) = x and, for 1 < i < k,
each x(i, j) is a sum of n successive x(i - 1, j) 's. By our assumption, no
x(i, j) is an /[^-vector with constant C. It follows easily by induction that
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11*0 > j)\\ < C~'nl, and, in particular, that ||x|| < C~knk = C~kN. However, it

also follows easily from the definition of the norm on X that ||x|| > Nf(N)~x.

This is a contradiction, by choice of k .   D

Note that we have proved the slightly stronger result that if the x, have

norm one then there is an interval £c{l,2,...,JV} such that Y,¡eE x¿ *s

an /"+-vector. The technique used to prove this lemma is essentially due to

R. C. James [3].

Lemma 2. Let M, N e N and C > I, let x be an l^-vector with constant C,

and let E\ < ■ ■ ■ < EM be a sequence of intervals. Then

M

El|F/x|| <C(l + 2M/N)\\x\
;=i

Proof. For convenience, let us normalize so that ||x|| = N and x = ¿Z,¡=i xi >

where xx < ■■ < xN and ||x,|| < C for each i. Given j, let Aj be the set of

i such that supp(x,) c Ej, and let B¡ be the set of / such that Ej(x¡) ± 0.

By the triangle inequality and the fact that the basis is bimonotone,

P;*ll < Ex<
Í€B¡

<C(\Aj\ + 2).

yM
Since EjLil^l < N, we get

M

E \\EjX\\ <C(N + 2M)
j=i

which gives the result, because of our normalization.   D

The next definition is extremely important, as it was in [1]. We shall say that

a sequence xi < • • • < x^ is a rapidly increasing sequence of lx+-averages, or
R.I.S., of length N with constant I + e if, for each k, xk is an /"'-average

with constant 1 + e , nx > 22" and, for fc = 2,3,...,/V,we have ey/f(nk) >

|ran(xi +--- + xk_l)\.

Lemma 3. Let 0 < e < 1/2, let xx, ... , x^ be a R.I.S. of length N with

constant 1 + e , and let x = £j^j x,. Let M > f~l(6N/e), and let Ex < ■ ■ ■ <

EM. Then f(M)~x ££, ||F;x|| < 1 + 2e .

Proof. For each i let n¡ be maximal such that x, is an /"|-average with con-

stant 1 -I- e . We obtain three estimates for Yiff=\ ll^^ill •

First, it follows directly from the definition of the norm that J2%\ \\Ejxi\\ ^

f(M). Second, we know that it is at most /(| supp(x,)|) and by Lemma 2 it is

at most (1 +e)(l +2M/n¡).
Let t be maximal such that nt < M. Then, if / < i, we have n¿+x < M.

Hence, by the definition of a R.I.S., we have

,_1 /-
E/(|supp(x,-)|)<eV-/W)
i=i
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and hence
Í-1   M _

EEii^ii^v^w
Using this and the other two inequalities, we find that

M    N _

EEii^x'ii^ev^l/)+^M) + (Ar-i)(1+e)(1+2M/w'+i)
7=1 r'=l

<f(M) + 3N(l+e).

Since f(M) > 6N/e , the result follows.   D

We shall now state the main lemma of this paper and deduce from it that X

does not contain Co, lx or a reflexive subspace. We will then prove the main

lemma.

Lemma 4. Let M e J, and let xx, ..., xm be a R.I.S. of length M with con-

stant 3/2. Then there exists a choice of signs ex, ... ,€m such that \\ Ylf=x e/*ill

< 100M/(M)-'.

Once we have proved this lemma, the proof of our main theorem is fairly

straightforward. First, if the completion of X contains a subspace that is

Co, h or reflexive, then it must contain such a subspace generated by a block

basis. Let us call it Y and the block basis yx,y2, ... . Since HE/Ii^/ll >
Nf(N)~x we know that Y cannot be cq. Let xx, ... , xm be a R.I.S. in Y

with constant 3/2 and length M e J. Then by Lemma 4 there is a sequence

of signs ex, ... , €m such that || 2^^ix e,x,|| < 100M/(M)_1. This shows that

yx,yi, ... is not (/(M)/100)-equivalent to the unit vector basis of lx. Since
M can be arbitrarily large, Y is not lx .

To show that Y is not reflexive is slightly more complicated, but still easy.

Given an integer M e J, define an M-pair as follows. Let ux,... , um be

a R.I.S. of length M and constant 3/2. By changing signs if necessary, let

the norm of 2J¡L\ ui De at m°st 100M/(M)_1 . For each /' let u* be a sup-

port functional for w, such that ran(w*) c ran(w;). Now let v be the vector

E^i "//Il EZi "HI and let v* be the functional f(M)~l(u\ + • •• + u*M). Then

v*(v) = Mf(M)-l/\\Y!txUi\\ > 1/100 and v* e AM. After a perturbation,
we can also get that v* eQ, while keeping v* in A*M and keeping the estimate

for v*(v). Such a pair (v , v*) is what we mean by an M-pair.

We can clearly choose an M-pair (v, v*) for any integer M in such a way

that v e Y, and we can also make min supp(w ) as large as we like. It follows

that we can find a sequence of pairs (v¡, v*) such that vx < v2 < ••• are

successive elements of Y and, for each i > 1, (v¡, v*) is a a(v\, ... , v*_x)-

pair. This ensures that v*, v%,...  is a special sequence.
We now claim that the linear functional w* defined by

N

x* iim E^w
n=\

is continuous on the completion of X. This is true because the limit certainly

exists for any x e X and is bounded on B(X), since the functionals used in
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the limit are all special functionals and hence have norm at most 1. Thus the

functional can be extended to the completion. However, w*(vn) > 1/100 for

every n , so the basic sequence vx ,v2, ... is not shrinking. (For basic facts

about bases and reflexivity see [2] or [7].) This shows that Y has a nonreflexive

subspace and hence is not reflexive.

The same argument shows that Y does not have a separable dual. Indeed,

suppose that z\, z\, ... were a dense subset of Y*. Then we could pick a block
basis xi, x2, ... of Vi, y2, ... such that z*(xj) = 0 for every j > i and hence

such that every sequence of successive vectors generated by Xi, x2, ... tended

weakly to zero. However, as above, we can find a block basis vx,v2, ... of

xx,x2, ... and a functional w* such that w*(vn) > 1/100 for every n e N.
This argument is standard and forms part of the proof of a more general result

of Johnson and Rosenthal [5] stated in the introduction.

This concludes the less technical part of the paper. The rest of the paper is

devoted to proving Lemma 4. We will need some preliminary lemmas before

we begin the proof in earnest. The first is similar to, but more complicated than,

Lemma 3. We need a few more definitions. A special combination is a functional

of the form E/Ii a¡*¡* where E/Ii lfl/|2 = 1 and x*,..., xN is a sequence of
disjoint special functionals. A particularly simple sort of special combination

can be defined as follows. Pick distinct integers jx, ... , jn e J, pick x* e A\

(recall that the sets A*m were defined at the same time as special sequences,

etc.), let Ex, ... , En be any sequence of intervals, let EJIi Ia; I2 — 1 > and let

x* = E¿Ii û,F,(x*) . We shall call these basic special combinations. Thus, a

basic special combination is one where the special sequences used to build it

have length at most 1.
For the proof of the next lemma and of the main lemma later it will be

convenient to make one other definition. Let Xi < • • • < % be a R.I.S. with
constant 1 + e , for some e > 0. For each i, let n, be maximal such that x¿ is
an /"^-average with constant 1 +e and let us write it out as x, = x,i H-\-x¡n¡,

where \\x¡j\\ < (1 + e)n~x for each j. Given an interval E c N, let i - íe
and j = je be respectively minimal and maximal such that Ex¡ and Exj are

nonzero, and let r = rE and s — Se be respectively minimal and maximal such

that Ex¡r and Exjs are nonzero. Define the length X(E) of the interval E

to be je - ¿e + (se/hje) - (rE/n¡E). Thus the length of E is the number of

x, 's contained in E, allowing for fractional parts. Obviously this definition

depends on the R.I.S. in question, but it will always be clear from the context

which one is being considered.

It is easy to check that if Ex < ■■■ < Em and E — \JE¡ then ¿^X(Ei) <
X(E). It follows from the triangle inequality and the lower bound for nx in the

definition of a R.I.S. that if x = Xi H-v xm with xx, ... , xm a R.I.S. with

constant 1 + e , then ||Fx|| < (1 + e)(X(E) + 22~M).

Lemma 5. Let I e J, and let xx, ... , Xm be a R.I.S. of length M with constant

3/2 such that exp v'log/ < M < I. Suppose also that x = xx + ■ ■ ■ + xm is

an lf^-vector with constant 2 for some M' > logM. Let x* = J2i=i a'xî oe a

basic special combination. Then |x*(x)| < 10~100||x|| + 2Mf(M)~x.

Proof. There exist distinct integers kx, ... , k^ e J such that, for each i, x,

is an interval projection of some functional in A*k . Suppose that there is some
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i such that kj = I. Then x* = f(l)~xE(y\* + ■■■ + y*) for some sequence

y\, ... ,y* of successive norm-one functionals and some interval E. Let Er =
ran(y*) for each r. Then certainly

i*;(*)i < /(/)-' E n^ii ^ /(0_1 ( 22"M/+0/2) E^r))
r=\ \ r=\ /

< f(l)~x(l + 3M/2) < 2Mf(M)~x.

Let us now suppose that Ei=i a¡x* is a basic combination and no k¡ is equal
to /. It follows that, for each i, either k¡ < log log log/ or k¡ > expexpexp/.

For each j =1,2,..., M, let n¡ be the greatest integer such that x¡ is an

/[^-average with constant 3/2, and, for each i = 1, 2, ... , N, let t¡ be the

greatest value of j such that k¡ > n¡ (or zero if there is no such ;'). We shall

now examine the effect of the functional x* on x .

We have

' m     \ h-\    \ Im

Exi= xi Exj}+ **(*«)+*;  E
,7=i   /        V;=i   / \j=ti+\

When j < tj, we know that nj+x < k¡ which implies, by the definition of a

R.I.S., that | supp(xi -l-h xt/_i)| < y/f(k¡). The first part of the right-hand

side is therefore at most y/f(ki)\\x*\\ao < f(k¡)'x^2 in modulus. As for the

third part, if we temporarily set y, = E/i/,.+i Xj , we find that it is at most

(ki

f(kd~l E H^'ll -E\<-<Ek.

in magnitude. Given an optimal sequence Ex, ... , Ekj, at most M of the

intervals contains part of more than one x¡. We now consider two cases.

If ki > M then Ac, > exp exp exp M, so the best splitting is no greater than the

greatest possible value of /(£,-)"' £^ij+i Erii \\EJrxj\\ such that E>il+i sj <

k¡ + M. However, when j > t¡ + 1 in this case, we certainly know that n¡ >

k¡ + M, so the greatest possible value is, by Lemma 2, at most

M

E /(*f)-1(l + 2n71(ft< + ^))<3(A/-r,)/(ft<rI</(fci)-1/2.
j=u+\

On the other hand, if k¡ < M, then k¡ < log log log M. Using Lemma 2
again and the fact that x is an /^'-average, we have

N¡ N,

E ii^/ii ̂  E n^xii ̂ 2(!+2^')ii*n,
r=\ r=\

giving |x*(y,)| < 6/(fc/)-111*11.
Since kx, ... , kiv are distinct, we get

N

i=i

Ex«*(x7")<2E/(5)-1/2 + 6E/W"1ll*ll<10"101ll*l
s€J seJ
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On the other hand, E¿Iia'*«*(*í.) is at m°st (E£Li l**(*t,)l2)1/2 which

equals (E7w E,,=; l*;(*y)l2)I/2 • But E,,=, l*;(*;) I2 < 1 for every ;, so this

is at most y/M which is less than I0~mMf(M)~x < 10-101||x||.

It follows in this case that |x*(x)| < 10_100||x||. It follows from our two

calculations that in general |x*(x)| < 10~100||x|| + 2Mf(M)~x, as stated.   D

Some later arguments will make use of the following easy Chebyshev-type
lemma.

Lemma 6. Let e > 0 and ô = v"2e". Let E/li af < I, let E/Ii bf < 1, and
let EJIi ai°i > 1 -e. Then there exists a subset A c {1,2,... , N} such that

E/e/iû2 > 1 _ ^ and, for every i e A, we have 1 - Vô < bi/a¡ < 1 + Vô.

Proof. First, we have E¿Ii(a¡ - °i)2 < 2e . Suppose that there exists A c

{1, 2,..., JV} such that ¿ZilEAaj > <* and(ai - b¡)2 > ôaf for every i e A.
Then

N

E(fl< - bo2 > E(«' - b¡)2 >Sj2ai>s2 = 2^
;=1 i£A ieA

contradicting the first estimate. It follows that there exists a subset A c {1, 2,

... , N} such that E,e^ àf>l-S and (a¡ - b¡)2 < ôaj for every ieA. This

implies that \a¡ - b¡\ < y/o\a¡\ for each / e A which implies the lemma.   D

The next lemma is very well known and has been used extensively in the local

theory of Banach spaces.

Lemma 7. Let f: {-1, 1}" -> R be a function that is l-Lipschitz with respect

to the Hamming distance on {-1,1}", let P be the uniform distribution on

{-1, 1}", and let M be the median of f. Then

P[|/(e) - M| > on] < 2exp(-r52«/2).

We are now ready to prove the main lemma.

Proof of Lemma 4. We shall prove the following stronger statement. There is a

choice of signs ex, ... , €m such that, for every interval E,

M

Ee<*<
u'=l

< lOOX(E)f(M)f(X(E)Y

Indeed, suppose this statement is false. We shall derive a contradiction in
several stages. First, define a seminorm ||| • ||| (actually it is easy to see that it is

a norm) on X by

|x|| = sup{|x*(x)| : x* is a special combination}.

Also, for the rest of the paper, let e = 10-50 .

Step 1. There exists an interval Ac {1,2,... , M} of cardinality

/Y>20exp y/logM

such that, with probability at least M~2 (over {-1, 1}A) the following state-

ments are true:
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(i) III Ei€£ e.*/| > (1 - Oll Y.KA e/*ill V (1 - e)100Nf(M)f{N)-2
(ii) for every subinterval 5 c ^4 we have

Ee'*<
ieB

< lOO\B\f(M)f(\B\y

Proof. For every e e {—1, 1}M there must be a minimal interval E such

that ||Fx(e)|| > 100A(F)/(M)/(A(F))-2, where x(e) stands for the vector

EJ=ie¿*¿- (Recall also that X(E) is the length of the interval E defined before
Lemma 5.) Now \\Ex(e)\\ < (3/2)X(E) + 2, so this tells us that (3/2)A(F) + 2>

100A(F)/(M)/(A(F))-2 which implies that X(E) > 20exp v'îôgM.
First, we shall show that, for such an E, we have ||Fx(e)|| = |Fx(e)|, i.e.,

x(e) is normed by a special combination. Indeed, if this is not the case, then

we can find a sequence of intervals Fx < ■■■ < Fk with (J/=1 F¡ = E such that,

writing x = x(e),

\\Ex\\ = f(k)-xJ2 Wixl
i=\

Setting X¡ = X(Fj) and X = X(E), we know that E/=iX¡ < X. By Lemma 3,

we also know that k < f~x(6M/e). We also know that, for each i, \\F¡x\\ <

(3/2)A + 22~M . It follows that ¿f=1 ||F;x|| < (3/2)A,- + 22_M/2. Since ||Fx|| >

100Xf(M)f(X)~2 this tells us that

((3/2)X + 22~M,1)f(k)-x > l00Xf(M)f(X)~2 > lOOXf(X)-1.

If k > A1/100 then this is a contradiction.

On the other hand, by minimality of E, we also know that

IIF-xH < 100A,/(M)/(A,)-2.

This tells us that

k

f(k)~x Y, lWXif(M)f(Xi)-2 > lOOXf(M)f(X)~2.
i=i

Since x/f(x)2 is concave and Xx + ■■■ + Xk = X, Jensen's inequality gives us

that

f(k)-xk.(X/k).f(M)f(X/k)-2 > Xf(M)f(X)~2

which implies that f(k)f(X/k)2 < f(X)2. But if 2 < k < A1/100 this gives
us that /(2)/(A"/100)2 < f(X)2 which is clearly false, by the definition of the
function f.

This establishes that ||Fx|| = |Fx||. Now let A = {i: ran(x,) c E}. We
shall abuse notation in the following way. When it is understood that an interval

A is a subset of {1,2,..., M}, we shall use the letter A to refer to the

projection E/li e¡x¡ ^ 2~2¡<ea eixi ■ Then, setting N = \A\, we have

IMxIl > |Fx| - 2 > (1 - e).100/(M)/(AO-2.

Since ||Fx|| = |Fx| and the basis of X is bimonotone, it is also clear that

\\Ax\\ > \\Ax\\ - 2 > (1 - e)||/ix||. If B c A is any subinterval, then, by the
minimality of E, we have ||ßx|| < 100|ß|/(M)/(|5|)-2.
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Now, there are at most M2 such intervals A C {1, 2, ... , M} and there is

one for each collection of signs (e,)¿í,. Hence, some interval A is used at least

M~22M times. If \A\ = N, then for at least M~22N choices of e e {-1, 1}A
parts (i) and (ii) of the claim hold.

Before stating the next step, we shall introduce some notation. Let K —

[log N] and let Bx < ■ • • < B5K be subintervals of A, each of cardinality

between (1 - e)N/5K and (1 + e)N/5K. Let v¡ = Eyes, ejxj and for r =

1,2,3,4,5 let ur = Eí=(r-i)*+i v¡ ■ Thus the ur and the v¡ are variables

depending on the (e,- : j € A).

Step 2. There exists a choice of signs (e¡ : i e A) such that

Ew
7=1

>(l-e)A00Nf(M)f(N)
-2

for every choice of signs r\\,... ,*¡s, and also such that for each i

\\vl\\<(l + 3e).20Nf(M)/Kf(N)2.

Proof. For a fixed choice ofnx,...,r¡s  we know that  IEJ=i Vjujî  is a 2-

Lipschitz function on {-1, 1}A . Hence, by Lemma 7,

Ew
7 = 1

M E w
7=1

>-.100iV/(M)/(AT)-2

< exp   —;
2 U/(W

TV

Since M 2 is greater than this, Step 1 implies that

M E w
7=1

>(l-e-¿).100/V/(M)/(/V)-2,

and hence, by Lemma 7 again,

5

¿Zw
7 = 1

Similarly,

<(l-2e).100/V/(M)/(/V)- < exp   -
40/(/V)

N

N
P[||««ll > (l+e).100(l+e)(/V/5í:)/(M)/(/V/5/í)-2] < exp |

But (1 + e)2f(N/5K)~2 < (1 + 3e)/(/V)-2, so

P[||w,|| > (l + 3e).W0(N/5K)f(M)f(N)-2]<expl-(

We have 5K + 32 events that we want to occur simultaneously, and the prob-

ability of each individual event failing is at most exp(-(e/40f(N))2(N/5K))

which is less than (5K + 32)_1 . This proves the second step.

40f(N)J 5K

N

40 f(N)J   5K
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Let us now fix a choice of signs e satisfying the conditions of the previ-

ous step, so that ux , ... , u$ and vx, ... , vsk are now fixed vectors. Note

that Uj is the sum of a R.I.S. of length approximately tV/5 (certainly at least

exp -y/logM) and constant 3/2. Also, since

\\uJ\\>¡uJl>(l-e).20Nf(M)f(N)-2

and uj = E*¡o-iyr+! Vi with "V'" - ^ + 3e)-(20N/K)f(M)f(N)~2 , we have

that Uj is an /^-average with constant (1 + 5e). This remark will be useful

later when we shall apply Lemma 5 to the vector «4 .

Before moving on to the next step, we shall need some more notation. First,

we know that there must exist special combinations x* = E"=i a'xl an(* y* =

Y!¡=xbjy* suchthat

5a < |x*(«i + u2 + «3 + M4 + u5)\ < 5a(l + 3e)(l - e)"1

and

5a < \y*(ux + u2-u3 + u4 + u5)\ < 5a(l + 3e)(l - e)"1

while

\\uj\\ <a(l + 3e)(l-e)-1    for each j.

Here a stands for (1 - e).20Nf(M)f(N)~2.
There are four cases for the signs of x*(ux + u2 + u^ + u4 + u5) and

y*(ux + u2 - «3 + «4 + us). We shall only look at the case when both are

positive. The other cases are similar. Let us define probability measures p and

v on {1,2,...,«} and {1,2, ... , m} by p(A) = E,e^ la/|2 and u(B) =

E_/efl 1^712 • Let us also define a sequence of signs nx, ... , n5 by «3 = -1 and

otherwise r\r = 1.

Step 3. Let 5 = \/100e . Then there exist C and D with //(C) > 1 - 5S and
i/(Z)) > I - 5S such that, for every i e C, j e D and 1 < r < 5, we have

(1 - y/S)(l + Se)aia < x*(ur) < (1 + VS)(1 + 5e)a¡a

and

(1 - v^Xl + 5e)bja < nry](ur) < (1 + Vô)(l + 5e)bja.

Proof. We know that x*(ur) < a(l + 3e)(l - e)"1 < a(l + 5e) for each r,

so x*(ur) > a(l - 20e) for each r (since we know x*(ur) < a(l + 5e) and

|x*(«i + ••• + u5)\ > 5a. In other words, E"=i a«**(Mr) > "(1 - 20e) while

E?=i l*i*(Mr)l2 < «2(1 + 5e)2. The existence of C now follows from Lemma 6

applied once for each ur. Similarly, we get the set D.

Let us take a closer look at the x* and y*. Each x* is of the form

F,(x*, -I-h x*p) for some special sequence x*,,..., x*p.. Let k¡ be min-

imal such that ran(x*A: ) nran(w5) ^ 0 . Then it may be the case that ran(x*fc ) n

ran(«3) = 0 or it may not. Let us define Cx to be {i : ran(x*fc ) nran(w3) ^ 0} .

Similarly, let Dx = {j : ranO^ ) nran(«3) ^ 0} , where l¡ is minimal such that

ran(y*; ) n ran(w5) ^ 0 .

Step4.  max{p(Cx),p(Dx)}<l/50.
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Proof. Let C2 = {1,2, ... , n}\Cx and D2 = {1, 2, ... , n}\Dx. Then

n

E^*r("4) = E a'-x*("4) + E a'**("4)-
i=i iec, iec2

Writing Ur for ran(ur), we have that £/4(E¡ec a¡*¡*) is MCi)1/2 multiplied

by a basic special combination. We also remarked earlier that w4 satisfied the

conditions required in Lemma 5 (with N/5 replacing M and M replacing /).

Hence, we may apply that lemma and deduce that

Eu¿**(W4]
í'ec.

< //(Ci)1/2(10-100||W4|| + (2;V/5)./(iV/5)-1).

Now

\\u4\\ > INI > a(l - 20e) > (1 - 25e).207V/(M)/(/V)-2,

so this is at most p(Cx)x/2(lO~m + l/45)||w4|| •

Meanwhile, | Ei6c2a'*/*(M4)| < p(C2)xl2\\u4\\. Since E"=i a¡x*(u4) >

a(l - 20e) > (1 - 25e)||u4||, we find that (I/20)p(Cx)xI2 + p(C2)x'2 > 1 -
25e . We also know that p(Cx) + p(C2) = 1 . If p(Cx) > 1/50 then p(C2) <
49/50 which implies that p(C2)xl2 < 99/100. This tells us that (99/100) +

(l/20\/5Ü) > 1 - 25e , which is false. The argument for Dx is similar.

Step 5. There exist C3 c CnC2 and DicDnD2 suchthat /i(C3) and u(D3)
both exceed 19/20 and a bijection c¡>: C3 —» F>3 such that, for every i e C3,

the special functionals U5x* and ^syl,) are not disjoint.

Proof. Without loss of generality all a¡ and b¡ are nonzero. If / e C this

implies that x*(ur) /= 0 for every r ,and in particular that ran(x*) n ran(wi) /

0. This remark will be useful later. Similarly, if j e B, then ran(y*) n

ran(«i) ^ 0.

If / e C n C2, then ran(x*fe.) n ran(«3) = 0, but ran(x*) n ran(w3) ^

0 . It follows that Ej(x* k._,) ^ 0, so the associated set of UsX¡ is uniquely

determined. Let

C4 = {/ e C n C2 : U5x* and c/5y* are disjoint for every j e D n D2}.

By the definition of C4 , we know that

Ei**(Ms)i2+ E i^;(M5)i2<ii"5ii2.
iec4 j€DnD2

From the properties of C and D we can deduce that

(1 - Vô)2(l + 5e)2a2p(C4) + (1 - v^l + 5e)2a2i^(F> n F>2) < (1 + 5e)2a2.

Hence,

(1 - Vô)2p(C4) + (1-5S- (1/50))(1 - v^)2 < 1,

which implies that p(C4) < 1/40. LetC3 = (CnC2)\C4. Then p(C3) >
(39/40) - (1/50) - 53 > 19/20 and, for every / e C3, there exists some ; e
DC\D2 (which must be unique) such that the associated sets of Í/5X* and Usy*

are not disjoint. By the same argument for the y* we can define a set D3. It

is easy to see that C3 and Dj, have the properties claimed above.
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Step 6. Let V = ran(«2 + w3). If / e C3, then Vx* = Vy^{i).

Proof. Setting j = 4>(i), we know that E¡x* fe._, ± 0 and similarly F¡y* ¡ _y ^

0 (where y] = F;^ + • ■ ■ + y*q.)). We also'know that a(x*{,..., x*'k'_x) =

^(y*!, ... , y* / _! ). It follows from the definition of a special sequence and the

fact that a is an injection that k¡ = l¡ andx*, = y*t for every t < k¡. Finally,

we know that Uxx* and Uxy* are both nonzero and that Í/3 n ran(x* k) —

t/3 n ran(y* ¡) = 0. Putting all these facts together tells us that Vx* = Vy* as

claimed.

The contradiction. The set C3 is certainly not empty. Let i e C$. Then since

C3 c C it follows from Step 3 that a/2 < x*(u2)/a¡ < 2a. Since x*(u2) =
y*,,Ju2) and Z>3 c D, we also get a/2 < x*(u2)/b^i) < 2a. This implies

that b^/üi > 1/4. By the same argument we have a/2 < x*(«3)/a, < 2a

and a/2 < -x*(Ui)/b^i) < 2a. This implies that b^/üi < -1/4. (Recall
that we restricted our attention to nonzero a¡ and b¡.) We have arrived at the

contradiction we promised.   D

Remarks. 1. It is not hard to see that the space constructed in this paper has

a predual, and that this predual does not contain Co or a boundedly complete

basic sequence. Since the predual certainly does not contain lx, it also gives a

space not containing Co, h or a reflexive subspace.
2. An overview of the proof of Lemma 4 might be helpful. The aim of the

first two steps is to obtain an almost isometric copy of /" for a suitable n, in
which every vector is normed by a special combination. The remaining steps

are designed to show that this cannot happen. There is a technical problem

about basic special combinations, which is dealt with in Step 4. The main

point of Steps 3 to 6 is to show that the special combinations norming ux +

—h us and ux + u2 - «3 + u4 + «5 are roughly equal on u2, «3 and u4 , which

clearly cannot happen. Of key importance is that any term in a special sequence
determines the whole of the sequence up to that point, but this fact is harder to

apply than it was in [1], where one did not deal with combinations of special

sequences.
3. The most important difference between the problem solved in this paper

and that solved in [ 1 ] is that reflexivity is an infinite-dimensional phenomenon,

whereas the property of not containing an unconditional basic sequence is equiv-

alent to saying that every infinite-dimensional subspace contains arbitrarily large

finite-dimensional (block) subspaces of a certain kind. The resulting need to

consider infinite special sequences is a serious difficulty, dealt with by the l2-
sum in the definition of the norm and the nonexplicitness of Lemma 4.

4. There are possible extensions of the main result. For example, James con-

structed a nonreflexive space with nontrivial type and cotype. It seems likely that

the construction of this paper could be adapted to give a space with nontrivial
type and cotype and no reflexive subspace (answering a question of Casazza).

Another hereditary version of a James space would be the following—a uni-

formly nonoctahedral space with no reflexive subspace. Again, such a space

probably exists, but a proof is unlikely to be pleasant.
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