Approximation properties for group $C^ *$-algebras and group von Neumann algebras
HTML articles powered by AMS MathViewer
- by Uffe Haagerup and Jon Kraus
- Trans. Amer. Math. Soc. 344 (1994), 667-699
- DOI: https://doi.org/10.1090/S0002-9947-1994-1220905-3
- PDF | Request permission
Abstract:
Let G be a locally compact group, let $C_r^\ast (G)$ (resp. ${\text {VN}}(G)$) be the ${C^\ast }$-algebra (resp. the von Neumann algebra) associated with the left regular representation l of G, let $A(G)$ be the Fourier algebra of G, and let ${M_0}A(G)$ be the set of completely bounded multipliers of $A(G)$. With the completely bounded norm, ${M_0}A(G)$ is a dual space, and we say that G has the approximation property (AP) if there is a net $\{ {u_\alpha }\}$ of functions in $A(G)$ (with compact support) such that ${u_\alpha } \to 1$ in the associated weak $^\ast$-topology. In particular, G has the AP if G is weakly amenable ($\Leftrightarrow A(G)$ has an approximate identity that is bounded in the completely bounded norm). For a discrete group $\Gamma$, we show that $\Gamma$ has the ${\text {AP}} \Leftrightarrow C_r^\ast (\Gamma )$ has the slice map property for subspaces of any ${C^\ast }$-algebra $\Leftrightarrow {\text {VN}}(\Gamma )$ has the slice map property for $\sigma$-weakly closed subspaces of any von Neumann algebra (Property ${S_\sigma }$). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group extensions. We also obtain some results concerning crossed products. For example, we show that the crossed product $M{ \otimes _\alpha }G$ of a von Neumann algebra M with Property ${S_\sigma }$ by a group G with the AP also has Property ${S_\sigma }$.References
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- Man Duen Choi and Edward G. Effros, Nuclear $C^*$-algebras and the approximation property, Amer. J. Math. 100 (1978), no. 1, 61–79. MR 482238, DOI 10.2307/2373876
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Michael Cowling and Uffe Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), no. 3, 507–549. MR 996553, DOI 10.1007/BF01393695
- Jean De Cannière and Uffe Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 2, 455–500. MR 784292, DOI 10.2307/2374423
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Edward G. Effros and Uffe Haagerup, Lifting problems and local reflexivity for $C^\ast$-algebras, Duke Math. J. 52 (1985), no. 1, 103–128. MR 791294, DOI 10.1215/S0012-7094-85-05207-X
- Edward G. Effros, Jon Kraus, and Zhong-Jin Ruan, On two quantized tensor products, Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991) Res. Notes Math., vol. 5, A K Peters, Wellesley, MA, 1993, pp. 125–145. MR 1259063
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Edward G. Effros and Zhong-Jin Ruan, On approximation properties for operator spaces, Internat. J. Math. 1 (1990), no. 2, 163–187. MR 1060634, DOI 10.1142/S0129167X90000113
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Uffe Haagerup, On the dual weights for crossed products of von Neumann algebras. I. Removing separability conditions, Math. Scand. 43 (1978/79), no. 1, 99–118. MR 523830, DOI 10.7146/math.scand.a-11768
- Uffe Haagerup, On the dual weights for crossed products of von Neumann algebras. I. Removing separability conditions, Math. Scand. 43 (1978/79), no. 1, 99–118. MR 523830, DOI 10.7146/math.scand.a-11768
- Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Functional Analysis 32 (1979), no. 2, 175–206. MR 534673, DOI 10.1016/0022-1236(79)90053-3
- Uffe Haagerup, Operator-valued weights in von Neumann algebras. I, J. Functional Analysis 32 (1979), no. 2, 175–206. MR 534673, DOI 10.1016/0022-1236(79)90053-3 —, An example of a non-nuclear ${C^\ast }$-algebra which has the metric approximation property, Invent. Math. 50 (1979), 279-293. —, Group ${C^\ast }$-algebras without the completely bounded approximation property, preprint.
- Mogens Lemvig Hansen, Weak amenability of the universal covering group of $\textrm {SU}(1,n)$, Math. Ann. 288 (1990), no. 3, 445–472. MR 1079871, DOI 10.1007/BF01444541
- Carl Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, xiii, 145–157 (French, with English summary). MR 425511
- Paul Jolissaint, A characterization of completely bounded multipliers of Fourier algebras, Colloq. Math. 63 (1992), no. 2, 311–313. MR 1180643, DOI 10.4064/cm-63-2-311-313
- Esben T. Kehlet, Cross sections for quotient maps of locally compact groups, Math. Scand. 55 (1984), no. 1, 152–160. MR 769031, DOI 10.7146/math.scand.a-12073
- Eberhard Kirchberg, $C^*$-nuclearity implies CPAP, Math. Nachr. 76 (1977), 203–212. MR 512362, DOI 10.1002/mana.19770760115
- Eberhard Kirchberg, The Fubini theorem for exact $C^{\ast }$-algebras, J. Operator Theory 10 (1983), no. 1, 3–8. MR 715549
- A. L. Carey, Projective representations of the Hilbert Lie group ${\cal U}(H)_{2}$ via quasifree states on the CAR algebra, J. Funct. Anal. 55 (1984), no. 3, 277–296. MR 734800, DOI 10.1016/0022-1236(84)90001-6
- Eberhard Kirchberg, On nonsemisplit extensions, tensor products and exactness of group $C^*$-algebras, Invent. Math. 112 (1993), no. 3, 449–489. MR 1218321, DOI 10.1007/BF01232444 —, On the matricial approximation property, preprint.
- Jon Kraus, The slice map problem for $\sigma$-weakly closed subspaces of von Neumann algebras, Trans. Amer. Math. Soc. 279 (1983), no. 1, 357–376. MR 704620, DOI 10.1090/S0002-9947-1983-0704620-0
- Jon Kraus, Abelian operator algebras and tensor products, J. Operator Theory 14 (1985), no. 2, 391–407. MR 808298
- Jon Kraus, The slice map problem and approximation properties, J. Funct. Anal. 102 (1991), no. 1, 116–155. MR 1138840, DOI 10.1016/0022-1236(91)90138-U
- Christopher Lance, On nuclear $C^{\ast }$-algebras, J. Functional Analysis 12 (1973), 157–176. MR 0344901, DOI 10.1016/0022-1236(73)90021-9
- Anthony To Ming Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39–59. MR 531968, DOI 10.1090/S0002-9947-1979-0531968-4
- Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180–A1182 (French). MR 239002
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Şerban Strătilă, Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells, 1981. Translated from the Romanian by the author. MR 696172
- Colin E. Sutherland, Type analysis of the regular representation of a nonunimodular group, Pacific J. Math. 79 (1978), no. 1, 225–250. MR 526681
- Ryszard Szwarc, Groups acting on trees and approximation properties of the Fourier algebra, J. Funct. Anal. 95 (1991), no. 2, 320–343. MR 1092129, DOI 10.1016/0022-1236(91)90032-Z
- Jun Tomiyama, Applications of Fubini type theorem to the tensor products of $C^{\ast }$-algebras, Tohoku Math. J. (2) 19 (1967), 213–226. MR 218906, DOI 10.2748/tmj/1178243318
- Alain Valette, Les représentations uniformément bornées associées à un arbre réel, Bull. Soc. Math. Belg. Sér. A 42 (1990), no. 3, 747–760 (French). Algebra, groups and geometry. MR 1316222
- Alain Valette, Weak amenability of right-angled Coxeter groups, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1331–1334. MR 1172955, DOI 10.1090/S0002-9939-1993-1172955-8
- Simon Wassermann, Injective $W^*$-algebras, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 1, 39–47. MR 448108, DOI 10.1017/S0305004100053664
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 667-699
- MSC: Primary 22D25; Secondary 22D15, 46L10, 46L55, 46M05
- DOI: https://doi.org/10.1090/S0002-9947-1994-1220905-3
- MathSciNet review: 1220905