Measures of chaos and a spectral decomposition of dynamical systems on the interval
HTML articles powered by AMS MathViewer
- by B. Schweizer and J. Smítal
- Trans. Amer. Math. Soc. 344 (1994), 737-754
- DOI: https://doi.org/10.1090/S0002-9947-1994-1227094-X
- PDF | Request permission
Abstract:
Let $f:[0,1] \to [0,1]$ be continuous. For $x,y \in [0,1]$, the upper and lower (distance) distribution functions, $F_{xy}^\ast$ and ${F_{xy}}$, are defined for any $t \geq 0$ as the lim sup and lim inf as $n \to \infty$ of the average number of times that the distance $|{f^i}(x) - {f^i}(y)|$ between the trajectories of x and y is less than t during the first n iterations. The spectrum of f is the system $\Sigma (f)$ of lower distribution functions which is characterized by the following properties: (1) The elements of $\Sigma (f)$ are mutually incomparable; (2) for any $F \in \Sigma (f)$, there is a perfect set ${P_F} \ne \emptyset$ such that ${F_{uv}} = F$ and $F_{uv}^\ast \equiv 1$ for any distinct u, $v \in {P_F}$; (3) if S is a scrambled set for f, then there are F, G in $\Sigma (f)$ and a decomposition $S = {S_F} \cup {S_G}$ (${S_G}$ may be empty) such that ${F_{uv}} \geq F$ if u, $v \in {S_F}$ and ${F_{uv}} \geq G$ if u, $v \in {S_G}$. Our principal results are: (1) If f has positive topological entropy, then $\Sigma (f)$ is nonempty and finite, and any $F \in \Sigma (f)$ is zero on an interval $[0,\varepsilon ]$, where $\varepsilon > 0$ (and hence any ${P_F}$ is a scrambled set in the sense of Li and Yorke). (2) If f has zero topological entropy, then $\Sigma (f) = \{ F\}$ where $F \equiv 1$. It follows that the spectrum of f provides a measure of the degree of chaos of f. In addition, a useful numerical measure is the largest of the numbers $\int _0^1 {(1 - F(t))dt}$, where $F \in \Sigma (f)$.References
- L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513, DOI 10.1007/BFb0084762
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR 2541754, DOI 10.1007/978-0-8176-4927-2
- V. V. Fedorenko, A. N. Šarkovskii, and J. Smítal, Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc. 110 (1990), no. 1, 141–148. MR 1017846, DOI 10.1090/S0002-9939-1990-1017846-5
- N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1083–1086. MR 1062387, DOI 10.1090/S0002-9939-1991-1062387-3
- A. N. Šarkovskiĭ and H. K. Kenžegulov, On properties of the set of limit points of an iterative sequence of a continuous function, Volž. Mat. Sb. Vyp. 3 (1965), 343–348 (Russian). MR 0199316
- M. Kuchta and J. Smítal, Two-point scrambled set implies chaos, European Conference on Iteration Theory (Caldes de Malavella, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 427–430. MR 1085314
- Casimir Kuratowski, Topologie. Vol. I, Monografie Matematyczne, Tom 20, Państwowe Wydawnictwo Naukowe, Warsaw, 1958 (French). 4ème éd. MR 0090795
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
- MichałMisiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167–169 (English, with Russian summary). MR 542778
- M. Misiurewicz and J. Smítal, Smooth chaotic maps with zero topological entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 421–424. MR 961740, DOI 10.1017/S0143385700004557
- Zbigniew Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR 670074
- D. Preiss and J. Smítal, A characterization of nonchaotic continuous maps of the interval stable under small perturbations, Trans. Amer. Math. Soc. 313 (1989), no. 2, 687–696. MR 997677, DOI 10.1090/S0002-9947-1989-0997677-9
- Chris Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics, vol. 1347, Springer-Verlag, Berlin, 1988. MR 969131, DOI 10.1007/BFb0079769 A. N. Sharkovsky, The partially ordered system of attracting sets, Soviet Math. Dokl. 7 (1966), 1384-1386. —, The behavior of a map in a neighborhood of an attracting set, Ukrain. Mat. Ž. 18 (1966), 60—83. (Russian) —, Continuous mapping on the set of $\omega$-limit sets of iterated sequences, Ukrain. Mat. Ž. 18 (1966), 127-130. (Russian)
- B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. MR 790314
- J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, 269–282. MR 849479, DOI 10.1090/S0002-9947-1986-0849479-9
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 737-754
- MSC: Primary 58F13; Secondary 54H20, 58F08
- DOI: https://doi.org/10.1090/S0002-9947-1994-1227094-X
- MathSciNet review: 1227094