## Measures of chaos and a spectral decomposition of dynamical systems on the interval

HTML articles powered by AMS MathViewer

- by B. Schweizer and J. Smítal PDF
- Trans. Amer. Math. Soc.
**344**(1994), 737-754 Request permission

## Abstract:

Let $f:[0,1] \to [0,1]$ be continuous. For $x,y \in [0,1]$, the upper and lower (distance) distribution functions, $F_{xy}^\ast$ and ${F_{xy}}$, are defined for any $t \geq 0$ as the lim sup and lim inf as $n \to \infty$ of the average number of times that the distance $|{f^i}(x) - {f^i}(y)|$ between the trajectories of*x*and

*y*is less than

*t*during the first

*n*iterations. The spectrum of

*f*is the system $\Sigma (f)$ of lower distribution functions which is characterized by the following properties: (1) The elements of $\Sigma (f)$ are mutually incomparable; (2) for any $F \in \Sigma (f)$, there is a perfect set ${P_F} \ne \emptyset$ such that ${F_{uv}} = F$ and $F_{uv}^\ast \equiv 1$ for any distinct

*u*, $v \in {P_F}$; (3) if

*S*is a scrambled set for

*f*, then there are

*F*,

*G*in $\Sigma (f)$ and a decomposition $S = {S_F} \cup {S_G}$ (${S_G}$ may be empty) such that ${F_{uv}} \geq F$ if

*u*, $v \in {S_F}$ and ${F_{uv}} \geq G$ if

*u*, $v \in {S_G}$. Our principal results are: (1) If

*f*has positive topological entropy, then $\Sigma (f)$ is nonempty and finite, and any $F \in \Sigma (f)$ is zero on an interval $[0,\varepsilon ]$, where $\varepsilon > 0$ (and hence any ${P_F}$ is a scrambled set in the sense of Li and Yorke). (2) If

*f*has zero topological entropy, then $\Sigma (f) = \{ F\}$ where $F \equiv 1$. It follows that the spectrum of

*f*provides a measure of the degree of chaos of

*f*. In addition, a useful numerical measure is the largest of the numbers $\int _0^1 {(1 - F(t))dt}$, where $F \in \Sigma (f)$.

## References

- L. S. Block and W. A. Coppel,
*Dynamics in one dimension*, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR**1176513**, DOI 10.1007/BFb0084762 - Rufus Bowen,
*Topological entropy and axiom $\textrm {A}$*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR**0262459** - Pierre Collet and Jean-Pierre Eckmann,
*Iterated maps on the interval as dynamical systems*, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR**2541754**, DOI 10.1007/978-0-8176-4927-2 - V. V. Fedorenko, A. N. Šarkovskii, and J. Smítal,
*Characterizations of weakly chaotic maps of the interval*, Proc. Amer. Math. Soc.**110**(1990), no. 1, 141–148. MR**1017846**, DOI 10.1090/S0002-9939-1990-1017846-5 - N. Franzová and J. Smítal,
*Positive sequence topological entropy characterizes chaotic maps*, Proc. Amer. Math. Soc.**112**(1991), no. 4, 1083–1086. MR**1062387**, DOI 10.1090/S0002-9939-1991-1062387-3 - A. N. Šarkovskiĭ and H. K. Kenžegulov,
*On properties of the set of limit points of an iterative sequence of a continuous function*, Volž. Mat. Sb. Vyp.**3**(1965), 343–348 (Russian). MR**0199316** - M. Kuchta and J. Smítal,
*Two-point scrambled set implies chaos*, European Conference on Iteration Theory (Caldes de Malavella, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 427–430. MR**1085314** - Casimir Kuratowski,
*Topologie. Vol. I*, Monografie Matematyczne, Tom 20, Państwowe Wydawnictwo Naukowe, Warsaw, 1958 (French). 4ème éd. MR**0090795** - T. Y. Li and James A. Yorke,
*Period three implies chaos*, Amer. Math. Monthly**82**(1975), no. 10, 985–992. MR**385028**, DOI 10.2307/2318254 - MichałMisiurewicz,
*Horseshoes for mappings of the interval*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**27**(1979), no. 2, 167–169 (English, with Russian summary). MR**542778** - M. Misiurewicz and J. Smítal,
*Smooth chaotic maps with zero topological entropy*, Ergodic Theory Dynam. Systems**8**(1988), no. 3, 421–424. MR**961740**, DOI 10.1017/S0143385700004557 - Zbigniew Nitecki,
*Topological dynamics on the interval*, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR**670074** - D. Preiss and J. Smítal,
*A characterization of nonchaotic continuous maps of the interval stable under small perturbations*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 687–696. MR**997677**, DOI 10.1090/S0002-9947-1989-0997677-9 - Chris Preston,
*Iterates of piecewise monotone mappings on an interval*, Lecture Notes in Mathematics, vol. 1347, Springer-Verlag, Berlin, 1988. MR**969131**, DOI 10.1007/BFb0079769
A. N. Sharkovsky, - B. Schweizer and A. Sklar,
*Probabilistic metric spaces*, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. MR**790314** - J. Smítal,
*Chaotic functions with zero topological entropy*, Trans. Amer. Math. Soc.**297**(1986), no. 1, 269–282. MR**849479**, DOI 10.1090/S0002-9947-1986-0849479-9

*The partially ordered system of attracting sets*, Soviet Math. Dokl.

**7**(1966), 1384-1386. —,

*The behavior of a map in a neighborhood of an attracting set*, Ukrain. Mat. Ž.

**18**(1966), 60—83. (Russian) —,

*Continuous mapping on the set of*$\omega$-

*limit sets of iterated sequences*, Ukrain. Mat. Ž.

**18**(1966), 127-130. (Russian)

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**344**(1994), 737-754 - MSC: Primary 58F13; Secondary 54H20, 58F08
- DOI: https://doi.org/10.1090/S0002-9947-1994-1227094-X
- MathSciNet review: 1227094