## Nonorientable $4$-manifolds with fundamental group of order $2$

HTML articles powered by AMS MathViewer

- by Ian Hambleton, Matthias Kreck and Peter Teichner PDF
- Trans. Amer. Math. Soc.
**344**(1994), 649-665 Request permission

## Abstract:

In this paper we classify nonorientable topological closed 4-manifolds with fundamental group $\mathbb {Z}/2$ up to homeomorphism. Our results give a complete list of such manifolds, and show how they can be distinguished by explicit invariants including characteristic numbers and the $\eta$-invariant associated to a normal $Pin^c$-structure by the spectral asymmetry of a certain Dirac operator. In contrast to the oriented case, there exist homotopy equivalent nonorientable topological 4-manifolds which are stably homeomorphic (after connected sum with ${S^2} \times {S^2}$) but not homeomorphic.## References

- M. F. Atiyah and I. M. Singer,
*The index of elliptic operators. III*, Ann. of Math. (2)**87**(1968), 546β604. MR**236952**, DOI 10.2307/1970717 - Hans J. Baues,
*Obstruction theory on homotopy classification of maps*, Lecture Notes in Mathematics, Vol. 628, Springer-Verlag, Berlin-New York, 1977. MR**0467748** - Edgar H. Brown Jr.,
*Generalizations of the Kervaire invariant*, Ann. of Math. (2)**95**(1972), 368β383. MR**293642**, DOI 10.2307/1970804 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - S. K. Donaldson,
*An application of gauge theory to four-dimensional topology*, J. Differential Geom.**18**(1983), no.Β 2, 279β315. MR**710056** - Michael H. Freedman,
*The disk theorem for four-dimensional manifolds*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp.Β 647β663. MR**804721** - Michael H. Freedman and Frank Quinn,
*Topology of 4-manifolds*, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR**1201584** - Peter B. Gilkey,
*The eta invariant for even-dimensional $\textrm {PIN}_{\textrm {c}}$ manifolds*, Adv. in Math.**58**(1985), no.Β 3, 243β284. MR**815358**, DOI 10.1016/0001-8708(85)90119-7 - Ian Hambleton and Matthias Kreck,
*Cancellation, elliptic surfaces and the topology of certain four-manifolds*, J. Reine Angew. Math.**444**(1993), 79β100. MR**1241794** - I. Hambleton and C. Riehm,
*Splitting of Hermitian forms over group rings*, Invent. Math.**45**(1978), no.Β 1, 19β33. MR**482788**, DOI 10.1007/BF01406221 - Myung Ho Kim, Sadayoshi Kojima, and Frank Raymond,
*Homotopy invariants of nonorientable $4$-manifolds*, Trans. Amer. Math. Soc.**333**(1992), no.Β 1, 71β81. MR**1028758**, DOI 10.1090/S0002-9947-1992-1028758-1 - R. C. Kirby and L. R. Taylor,
*$\textrm {Pin}$ structures on low-dimensional manifolds*, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp.Β 177β242. MR**1171915** - Matthias Kreck,
*Surgery and duality*, Ann. of Math. (2)**149**(1999), no.Β 3, 707β754. MR**1709301**, DOI 10.2307/121071
R. E. Stong, - C. T. C. Wall,
*Surgery on compact manifolds*, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR**0431216**
β,

*Notes on cobordism theory*, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1968.

*PoincarΓ© complexes*. I, Ann. of Math. (2)

**86**(1967), 231-245.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**344**(1994), 649-665 - MSC: Primary 57N13; Secondary 57Q20, 57R67
- DOI: https://doi.org/10.1090/S0002-9947-1994-1234481-2
- MathSciNet review: 1234481