Nonorientable $4$-manifolds with fundamental group of order $2$
HTML articles powered by AMS MathViewer
- by Ian Hambleton, Matthias Kreck and Peter Teichner
- Trans. Amer. Math. Soc. 344 (1994), 649-665
- DOI: https://doi.org/10.1090/S0002-9947-1994-1234481-2
- PDF | Request permission
Abstract:
In this paper we classify nonorientable topological closed 4-manifolds with fundamental group $\mathbb {Z}/2$ up to homeomorphism. Our results give a complete list of such manifolds, and show how they can be distinguished by explicit invariants including characteristic numbers and the $\eta$-invariant associated to a normal $Pin^c$-structure by the spectral asymmetry of a certain Dirac operator. In contrast to the oriented case, there exist homotopy equivalent nonorientable topological 4-manifolds which are stably homeomorphic (after connected sum with ${S^2} \times {S^2}$) but not homeomorphic.References
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546β604. MR 236952, DOI 10.2307/1970717
- Hans J. Baues, Obstruction theory on homotopy classification of maps, Lecture Notes in Mathematics, Vol. 628, Springer-Verlag, Berlin-New York, 1977. MR 0467748
- Edgar H. Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. (2) 95 (1972), 368β383. MR 293642, DOI 10.2307/1970804
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no.Β 2, 279β315. MR 710056
- Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp.Β 647β663. MR 804721
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Peter B. Gilkey, The eta invariant for even-dimensional $\textrm {PIN}_{\textrm {c}}$ manifolds, Adv. in Math. 58 (1985), no.Β 3, 243β284. MR 815358, DOI 10.1016/0001-8708(85)90119-7
- Ian Hambleton and Matthias Kreck, Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine Angew. Math. 444 (1993), 79β100. MR 1241794
- I. Hambleton and C. Riehm, Splitting of Hermitian forms over group rings, Invent. Math. 45 (1978), no.Β 1, 19β33. MR 482788, DOI 10.1007/BF01406221
- Myung Ho Kim, Sadayoshi Kojima, and Frank Raymond, Homotopy invariants of nonorientable $4$-manifolds, Trans. Amer. Math. Soc. 333 (1992), no.Β 1, 71β81. MR 1028758, DOI 10.1090/S0002-9947-1992-1028758-1
- R. C. Kirby and L. R. Taylor, $\textrm {Pin}$ structures on low-dimensional manifolds, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp.Β 177β242. MR 1171915
- Matthias Kreck, Surgery and duality, Ann. of Math. (2) 149 (1999), no.Β 3, 707β754. MR 1709301, DOI 10.2307/121071 R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1968.
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216 β, PoincarΓ© complexes. I, Ann. of Math. (2) 86 (1967), 231-245.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 649-665
- MSC: Primary 57N13; Secondary 57Q20, 57R67
- DOI: https://doi.org/10.1090/S0002-9947-1994-1234481-2
- MathSciNet review: 1234481