## On an integral representation for the genus series for $2$-cell embeddings

HTML articles powered by AMS MathViewer

- by D. M. Jackson PDF
- Trans. Amer. Math. Soc.
**344**(1994), 755-772 Request permission

## Abstract:

An integral representation for the genus series for maps on oriented surfaces is derived from the combinatorial axiomatisation of 2-cell embeddings in orientable surfaces. It is used to derive an explicit expression for the genus series for dipoles. The approach can be extended to vertex-regular maps in general and, in this way, may shed light on the genus series for quadrangulations. The integral representation is used in conjunction with an approach through the group algebra, $\mathbb {C}{\mathfrak {G}_n}$, of the symmetric group [11] to obtain a factorisation of certain Gaussian integrals.## References

- G. E. Andrews, D. M. Jackson, and T. I. Visentin,
*A hypergeometric analysis of the genus series for a class of $2$-cell embeddings in orientable surfaces*, SIAM J. Math. Anal.**25**(1994), no. 2, 243–255. MR**1266557**, DOI 10.1137/S0036141092229549 - Edward A. Bender and E. Rodney Canfield,
*The asymptotic number of rooted maps on a surface*, J. Combin. Theory Ser. A**43**(1986), no. 2, 244–257. MR**867650**, DOI 10.1016/0097-3165(86)90065-8 - D. Bessis, C. Itzykson, and J. B. Zuber,
*Quantum field theory techniques in graphical enumeration*, Adv. in Appl. Math.**1**(1980), no. 2, 109–157. MR**603127**, DOI 10.1016/0196-8858(80)90008-1 - Freeman J. Dyson,
*Statistical theory of the energy levels of complex systems. I*, J. Mathematical Phys.**3**(1962), 140–156. MR**143556**, DOI 10.1063/1.1703773 - I. P. Goulden and D. M. Jackson,
*Combinatorial enumeration*, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota. MR**702512**
—, - J. Harer and D. Zagier,
*The Euler characteristic of the moduli space of curves*, Invent. Math.**85**(1986), no. 3, 457–485. MR**848681**, DOI 10.1007/BF01390325
G. ’t Hooft, - Claude Itzykson and Jean-Michel Drouffe,
*Statistical field theory. Vol. 1*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1989. From Brownian motion to renormalization and lattice gauge theory. MR**1175176** - D. M. Jackson,
*Counting cycles in permutations by group characters, with an application to a topological problem*, Trans. Amer. Math. Soc.**299**(1987), no. 2, 785–801. MR**869231**, DOI 10.1090/S0002-9947-1987-0869231-9 - D. M. Jackson and T. I. Visentin,
*A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus*, Trans. Amer. Math. Soc.**322**(1990), no. 1, 343–363. MR**1012517**, DOI 10.1090/S0002-9947-1990-1012517-8
J. C. Kluyver, - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR**553598** - Madan Lal Mehta,
*Random matrices*, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR**1083764**
G. Szegö, - Hermann Weyl,
*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158**

*Symmetric functions and Macdonald’s result for top connexion coefficients in the symmetric group*, J. Algebra (to appear).

*A planar diagram theory for string interactions*, Nuclear Phys. B

**72**(1974), 461-473.

*A local probability problem*, Nederl. Akad. Wetensch. Proc. Ser. B

**8**(1906), 341-350.

*Or thogonal polynomials*, Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**344**(1994), 755-772 - MSC: Primary 05C10; Secondary 05C30, 20C15, 58C35
- DOI: https://doi.org/10.1090/S0002-9947-1994-1236224-5
- MathSciNet review: 1236224