Hochschild homology in a braided tensor category
HTML articles powered by AMS MathViewer
- by John C. Baez
- Trans. Amer. Math. Soc. 344 (1994), 885-906
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240942-2
- PDF | Request permission
Abstract:
An r-algebra is an algebra A over k equipped with a Yang-Baxter operator $R:A \otimes A \to A \otimes A$ such that $R(1 \otimes a) = a \otimes 1$, $R(a \otimes 1) = 1 \otimes a$, and the quasitriangularity conditions $R(m \otimes I) = (I \otimes m)(R \otimes I)(I \otimes R)$ and $R(I \otimes m) = (m \otimes I)(I \otimes R)(R \otimes I)$ hold, where $m:A \otimes A \to A$ is the multiplication map and $I:A \to A$ is the identity. R-algebras arise naturally as algebra objects in a braided tensor category of k-modules (e.g., the category of representations of a quantum group). If $m = m{R^2}$, then A is both a left and right module over the braided tensor product ${A^e} = A\hat \otimes {A^{{\text {op}}}}$, where ${A^{{\text {op}}}}$ is simply A equipped with the "opposite" multiplication map ${m^{{\text {op}}}} = mR$. Moreover, there is an explicit chain complex computing the braided Hochschild homology ${H^R}(A) = \operatorname {Tor}^{{A^e}}(A,A)$. When $m = mR$ and ${R^2} = {\text {id}}_{A \otimes A}$, this chain complex admits a generalized shuffle product, and there is a homomorphism from the r-commutative differential forms ${\Omega _R}(A)$ to ${H^R}(A)$.References
- John C. Baez, $R$-commutative geometry and quantization of Poisson algebras, Adv. Math. 95 (1992), no. 1, 61–91. MR 1176153, DOI 10.1016/0001-8708(92)90044-L
- John C. Baez, Differential calculi on quantum vector spaces with Hecke-type relations, Lett. Math. Phys. 23 (1991), no. 2, 133–141. MR 1148505, DOI 10.1007/BF00703726
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176 P. Deligne and J. Milne, Tannakian categories, Lecture Notes in Math., vol. 900, Springer, New York, 1982.
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193–225. MR 1015339
- Ping Feng and Boris Tsygan, Hochschild and cyclic homology of quantum groups, Comm. Math. Phys. 140 (1991), no. 3, 481–521. MR 1130695 J. Fröhlich and F. Gabbiani, Braid group statistics in local quantum theory, preprint.
- Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156–182. MR 1020583, DOI 10.1016/0001-8708(89)90018-2
- G. Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR 142598, DOI 10.1090/S0002-9947-1962-0142598-8 A. Joyal and R. Street, Braided monoidal categories, Mathematics Reports 86008, Macquarie University, 1986.
- André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55–112. MR 1113284, DOI 10.1016/0001-8708(91)90003-P
- Max Karoubi, Homologie cyclique et $K$-théorie, Astérisque 149 (1987), 147 (French, with English summary). MR 913964 L. Kauffman, On knots, Princeton Univ. Press, Princeton, N.J., 1986. —, Knots and physics, World Scientific, New Jersey, 1991.
- V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk 41 (1986), no. 5(251), 185–186 (Russian). MR 878344
- Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), no. 4, 28–46. MR 170925
- Shahn Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Modern Phys. A 5 (1990), no. 1, 1–91. MR 1027945, DOI 10.1142/S0217751X90000027
- Yu. I. Manin, Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988. MR 1016381 —, Topics in noncommutative geometry, Princeton Univ. Press, Princeton, N.J., 1991.
- W. Pusz, Twisted canonical anticommutation relations, Rep. Math. Phys. 27 (1989), no. 3, 349–360. MR 1109004, DOI 10.1016/0034-4877(89)90017-7
- W. Pusz and S. L. Woronowicz, Twisted second quantization, Rep. Math. Phys. 27 (1989), no. 2, 231–257. MR 1067498, DOI 10.1016/0034-4877(89)90006-2
- Jean-Louis Loday and Daniel Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. MR 780077, DOI 10.1007/BF02566367
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112
- Marc A. Rieffel, Noncommutative tori—a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR 1047281, DOI 10.1090/conm/105/1047281 N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math., vol. 265, Springer, Berlin-Heidelberg, 1975.
- Peter Seibt, Cyclic homology of algebras, World Scientific Publishing Co., Singapore, 1987. MR 938097, DOI 10.1142/0524
- B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217–218 (Russian). MR 695483
- K.-H. Ulbrich, On Hopf algebras and rigid monoidal categories, Israel J. Math. 72 (1990), no. 1-2, 252–256. Hopf algebras. MR 1098991, DOI 10.1007/BF02764622
- Julius Wess and Bruno Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear Phys. B Proc. Suppl. 18B (1990), 302–312 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128150, DOI 10.1016/0920-5632(91)90143-3
- C. N. Yang and M. L. Ge (eds.), Braid group, knot theory and statistical mechanics, Advanced Series in Mathematical Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. MR 1062420
- Bruno Zumino, Deformation of the quantum mechanical phase space with bosonic or fermionic coordinates, Modern Phys. Lett. A 6 (1991), no. 13, 1225–1235. MR 1110758, DOI 10.1142/S0217732391001305
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 885-906
- MSC: Primary 16W99; Secondary 16E40, 18G99
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240942-2
- MathSciNet review: 1240942