The functional determinant of a four-dimensional boundary value problem
HTML articles powered by AMS MathViewer
- by Thomas P. Branson and Peter B. Gilkey
- Trans. Amer. Math. Soc. 344 (1994), 479-531
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240945-8
- PDF | Request permission
Abstract:
Working on four-dimensional manifolds with boundary, we consider, elliptic boundary value problems (A, B), A being the interior and B the boundary operator. These problems (A, B) should be valued in a tensorspinor bundle; should depend in a universal way on a Riemannian metric g and be formally selfadjoint; should behave in an appropriate way under conformal change $g \to {\Omega ^2}g$, $\Omega$ a smooth positive function; and the leading symbol of A should be positive definite. We view the functional determinant det ${A_B}$ of such a problem as a functional on a conformal class $\{ {\Omega ^2}g\}$, and develop a formula for the quotient of the determinant at ${\Omega ^2}g$ by that at g. (Analogous formulas are known to be intimately related to physical string theories in dimension two, and to sharp inequalities of borderline Sobolev embedding and Moser-Trudinger types for the boundariless case in even dimensions.) When the determinant in a background metric ${g_0}$ is explicitly computable, the result is a formula for the determinant at each metric ${\Omega ^2}{g_0}$ (not Just a quotient of determinants). For example, we compute the functional determinants of the Dirichlet and Robin (conformally covariant Neumann) problems for the Laplacian in the ball ${B^4}$, using our general quotient formulas in the case of the conformal Laplacian, together with an explicit computation on the hemisphere ${H^4}$.References
- David R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385–398. MR 960950, DOI 10.2307/1971445
- William Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242. MR 1230930, DOI 10.2307/2946638
- David Bleecker, Determination of a Riemannian metric from the first variation of its spectrum, Amer. J. Math. 107 (1985), no. 4, 815–831. MR 796904, DOI 10.2307/2374358
- Thomas P. Branson, Conformally covariant equations on differential forms, Comm. Partial Differential Equations 7 (1982), no. 4, 393–431. MR 652815, DOI 10.1080/03605308208820228
- Thomas P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), no. 2, 293–345. MR 832360, DOI 10.7146/math.scand.a-12120
- Thomas P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), no. 2, 199–291. MR 904819, DOI 10.1016/0022-1236(87)90025-5
- Thomas P. Branson, Harmonic analysis in vector bundles associated to the rotation and spin groups, J. Funct. Anal. 106 (1992), no. 2, 314–328. MR 1165857, DOI 10.1016/0022-1236(92)90050-S
- Thomas P. Branson, Sun-Yung A. Chang, and Paul C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Comm. Math. Phys. 149 (1992), no. 2, 241–262. MR 1186028
- Thomas P. Branson and Peter B. Gilkey, The asymptotics of the Laplacian on a manifold with boundary, Comm. Partial Differential Equations 15 (1990), no. 2, 245–272. MR 1032631, DOI 10.1080/03605309908820686
- Thomas P. Branson and Bent Ørsted, Conformal indices of Riemannian manifolds, Compositio Math. 60 (1986), no. 3, 261–293. MR 869104
- Thomas P. Branson and Bent Ørsted, Conformal geometry and global invariants, Differential Geom. Appl. 1 (1991), no. 3, 279–308. MR 1244447, DOI 10.1016/0926-2245(91)90004-S
- Thomas P. Branson and Bent Ørsted, Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991), no. 3, 669–682. MR 1050018, DOI 10.1090/S0002-9939-1991-1050018-8
- Constantine Callias and Clifford H. Taubes, Functional determinants in Euclidean Yang-Mills theory, Comm. Math. Phys. 77 (1980), no. 3, 229–250. MR 594302
- Michael Eastwood and Michael Singer, A conformally invariant Maxwell gauge, Phys. Lett. A 107 (1985), no. 2, 73–74. MR 774899, DOI 10.1016/0375-9601(85)90198-7
- José F. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), no. 3, 687–698. MR 962929, DOI 10.1512/iumj.1988.37.37033
- José F. Escobar, The Yamabe problem on manifolds with boundary, J. Differential Geom. 35 (1992), no. 1, 21–84. MR 1152225
- Howard D. Fegan and Peter Gilkey, Invariants of the heat equation, Pacific J. Math. 117 (1985), no. 2, 233–254. MR 779919
- Peter B. Gilkey, Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian, Compositio Math. 38 (1979), no. 2, 201–240. MR 528840
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634
- Peter B. Gilkey and Lance Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math. 36 (1983), no. 1, 85–131. MR 680084, DOI 10.1002/cpa.3160360105
- Yvette Kosmann, Dérivées de Lie des spineurs, Ann. Mat. Pura Appl. (4) 91 (1972), 317–395 (French, with English summary). MR 312413, DOI 10.1007/BF02428822
- Yvette Kosmann, Degrés conformes des laplaciens et des opérateurs de Dirac, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 5, Aii, A283–A285 (French, with English summary). MR 391187
- E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys. 86 (1982), no. 3, 321–326. MR 677001
- Bent Ørsted, The conformal invariance of Huygens’ principle, J. Differential Geometry 16 (1981), no. 1, 1–9. MR 633620
- B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), no. 1, 148–211. MR 960228, DOI 10.1016/0022-1236(88)90070-5
- B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal. 80 (1988), no. 1, 212–234. MR 960229, DOI 10.1016/0022-1236(88)90071-7 S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, 1983.
- Steven Rosenberg, The determinant of a conformally covariant operator, J. London Math. Soc. (2) 36 (1987), no. 3, 553–568. MR 918645, DOI 10.1112/jlms/s2-36.3.553
- Robert S. Strichartz, Linear algebra of curvature tensors and their covariant derivatives, Canad. J. Math. 40 (1988), no. 5, 1105–1143. MR 973512, DOI 10.4153/CJM-1988-046-7
- Ilan Vardi, Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. MR 930041, DOI 10.1137/0519035
- William I. Weisberger, Normalization of the path integral measure and the coupling constants for bosonic strings, Nuclear Phys. B 284 (1987), no. 1, 171–200. MR 879081, DOI 10.1016/0550-3213(87)90032-0
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 479-531
- MSC: Primary 58G26; Secondary 58G20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1240945-8
- MathSciNet review: 1240945