Amenable actions of groups
HTML articles powered by AMS MathViewer
- by Scot Adams, George A. Elliott and Thierry Giordano
- Trans. Amer. Math. Soc. 344 (1994), 803-822
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250814-5
- PDF | Request permission
Abstract:
The equivalence between different characterizations of amenable actions of a locally compact group is proved. In particular, this answers a question raised by R. J. Zimmer in 1977.References
- William Arveson, An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360
- Scot Adams and Garrett Stuck, Splitting of non-negatively curved leaves in minimal sets of foliations, Duke Math. J. 71 (1993), no. 1, 71–92. MR 1230286, DOI 10.1215/S0012-7094-93-07104-9
- A. Connes, On hyperfinite factors of type $\textrm {III}_{0}$ and Krieger’s factors, J. Functional Analysis 18 (1975), 318–327. MR 0372635, DOI 10.1016/0022-1236(75)90019-1
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- A. Connes and E. J. Woods, Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks, Pacific J. Math. 137 (1989), no. 2, 225–243. MR 990212
- G. A. Elliott and T. Giordano, Amenable actions of discrete groups, Ergodic Theory Dynam. Systems 13 (1993), no. 2, 289–318. MR 1235474, DOI 10.1017/S0143385700007379
- Jacob Feldman, Peter Hahn, and Calvin C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math. 28 (1978), no. 3, 186–230. MR 492061, DOI 10.1016/0001-8708(78)90114-7
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- V. Ya. Golodets and S. D. Sinel′shchikov, Amenable ergodic actions of groups and images of cocycles, Dokl. Akad. Nauk SSSR 312 (1990), no. 6, 1296–1299 (Russian); English transl., Soviet Math. Dokl. 41 (1990), no. 3, 523–526 (1991). MR 1076484
- Valentin Ya. Golodets and Sergey D. Sinelshchikov, Outer conjugacy for actions of continuous amenable groups, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 737–769. MR 934670, DOI 10.2977/prims/1195176031 —, Classification and the structure of cocycles of amenable ergodic equivalence relations, preprint.
- Wojciech Jaworski, Poisson and Furstenberg boundaries of random walks, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 279–284. MR 1145123
- Robert R. Kallman, Certain quotient spaces are countably separated. III, J. Functional Analysis 22 (1976), no. 3, 225–241. MR 0417329, DOI 10.1016/0022-1236(76)90010-0
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI 10.1017/S0143385700006751
- George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327–335. MR 143874 C.E. Sutherland, Preliminary report on Bratteli diagrams, private communication.
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. MR 805158
- Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350–372. MR 0473096, DOI 10.1016/0022-1236(78)90013-7
- Robert J. Zimmer, Hyperfinite factors and amenable ergodic actions, Invent. Math. 41 (1977), no. 1, 23–31. MR 470692, DOI 10.1007/BF01390162
- Robert J. Zimmer, On the von Neumann algebra of an ergodic group action, Proc. Amer. Math. Soc. 66 (1977), no. 2, 289–293. MR 460599, DOI 10.1090/S0002-9939-1977-0460599-3 —, Ergodic theory and semisimple groups, Birkhäuser, Boston, MA, 1984.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 803-822
- MSC: Primary 22D99; Secondary 22D40, 28D15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250814-5
- MathSciNet review: 1250814