Dirichlet problem at infinity for harmonic maps: rank one symmetric spaces
HTML articles powered by AMS MathViewer
- by Harold Donnelly
- Trans. Amer. Math. Soc. 344 (1994), 713-735
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250817-0
- PDF | Request permission
Abstract:
Given a symmetric space M, of rank one and noncompact type, one compactifies M by adding a sphere at infinity, to obtain a manifold $M\prime$ with boundary. If $\bar M$ is another rank one symmetric space, suppose that $f:\partial M\prime \to \partial \bar M\prime$ is a continuous map. The Dirichlet problem at infinity is to construct a proper harmonic map $u:M \to \bar M$ with boundary values f. This paper concerns existence, uniqueness, and boundary regularity for this Dirichlet problem.References
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443
- C. Robin Graham, The Dirichlet problem for the Bergman Laplacian. I, Comm. Partial Differential Equations 8 (1983), no. 5, 433–476. MR 695400, DOI 10.1080/03605308308820275
- Philip Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687. MR 214004, DOI 10.4153/CJM-1967-062-6
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), no. 1, 1–46. MR 1109619, DOI 10.1007/BF01232256
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps, Ann. of Math. (2) 137 (1993), no. 1, 167–201. MR 1200080, DOI 10.2307/2946622
- Peter Li and Luen-Fai Tam, Uniqueness and regularity of proper harmonic maps. II, Indiana Univ. Math. J. 42 (1993), no. 2, 591–635. MR 1237061, DOI 10.1512/iumj.1993.42.42027
- Richard Schoen and Shing Tung Yau, Compact group actions and the topology of manifolds with nonpositive curvature, Topology 18 (1979), no. 4, 361–380. MR 551017, DOI 10.1016/0040-9383(79)90026-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 713-735
- MSC: Primary 58E20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250817-0
- MathSciNet review: 1250817