Homotopy groups in Lie foliations
HTML articles powered by AMS MathViewer
- by Enrique Macias-Virgós
- Trans. Amer. Math. Soc. 344 (1994), 701-711
- DOI: https://doi.org/10.1090/S0002-9947-1994-1260205-9
- PDF | Request permission
Abstract:
According to the results of Fédida and Molino [9], the structure of a G-Lie foliation F on a compact manifold M can be described by means of four locally trivial fibre bundles. In this paper we study the relations that those fibrations imply among the (rational) homotopy groups of: the manifold M, the generic leaf L, its closure $N = \bar L$, the basic manifold W, the Lie group G, and the structural Lie group H. Also, we prove that those relations are a particular case of an algebraic result concerning generalized homology theories.References
- P. Caron and Y. Carrière, Flots transversalement de Lie, C. R. Acad. Sci. Paris 280 (1980), 477-478.
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- Edmond Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A999–A1001 (French). MR 285025 Y. Félix, La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque 176, S.M.F., 1989.
- E. Gallego and A. Reventós, Lie flows of codimension $3$, Trans. Amer. Math. Soc. 326 (1991), no. 2, 529–541. MR 1005934, DOI 10.1090/S0002-9947-1991-1005934-4
- Étienne Ghys, Groupes d’holonomie des feuilletages de Lie, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 2, 173–182 (French). MR 799078
- Robert Hermann, On the differential geometry of foliations, Ann. of Math. (2) 72 (1960), 445–457. MR 142130, DOI 10.2307/1970226 G. Meigniez, Sous-groupes de génération compacte des groupes de Lie résolubles, Université Paris VII, preprint, 1992.
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR 0226634
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- C. T. C. Wall, On the exactness of interlocking sequences, Enseign. Math. (2) 12 (1966), 95–100. MR 206943
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 344 (1994), 701-711
- MSC: Primary 57R30; Secondary 55N99, 55Q05, 57T10, 57T20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1260205-9
- MathSciNet review: 1260205