The Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$
HTML articles powered by AMS MathViewer
- by D. I. Wallace
- Trans. Amer. Math. Soc. 345 (1994), 1-36
- DOI: https://doi.org/10.1090/S0002-9947-1994-1184117-4
- PDF | Request permission
Abstract:
In this paper we compute the trace formula for $SL(3,\mathbb {Z})$ in detail and refine it to a greater extent than has previously been done. We show that massive cancellation occurs in the parabolic terms, leading to a far simpler formula than had been thought possible.References
- James Arthur, The trace formula for reductive groups, Conference on automorphic theory (Dijon, 1981) Publ. Math. Univ. Paris VII, vol. 15, Univ. Paris VII, Paris, 1983, pp.ย 1โ41. MR 723181, DOI 10.1007/978-1-4684-6730-7_{1}
- James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no.ย 1, 1โ74. MR 625344, DOI 10.2307/1971376
- James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in $G(\textbf {Q})$, Duke Math. J. 45 (1978), no.ย 4, 911โ952. MR 518111
- James Arthur, A trace formula for reductive groups. II. Applications of a truncation operator, Compositio Math. 40 (1980), no.ย 1, 87โ121. MR 558260 R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, Wiley-Interscience, New York, 1961.
- Isaac Y. Efrat, The Selberg trace formula for $\textrm {PSL}_2(\textbf {R})^n$, Mem. Amer. Math. Soc. 65 (1987), no.ย 359, iv+111. MR 874084, DOI 10.1090/memo/0359
- Yuval Z. Flicker, The trace formula and base change for $\textrm {GL}(3)$, Lecture Notes in Mathematics, vol. 927, Springer-Verlag, Berlin-New York, 1982. MR 663002, DOI 10.1007/BFb0094272 I. M. Gelfand, M. I. Graev, and I. I. Piatetski-Shapiro, Representation theory and automorphic functions, Saunders, Philadelphia, PA, 1966.
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 0439755, DOI 10.1007/BFb0079608 โ, The Selberg trace formula for $PSL(2,\mathbb {R})$, vol. II, Lecture Notes in Math., vol. 1001, Springer-Verlag, Berlin and New York, 1983.
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- K. Imai and A. Terras, The Fourier expansion of Eisenstein series for $\textrm {GL}(3,\,\textbf {Z})$, Trans. Amer. Math. Soc. 273 (1982), no.ย 2, 679โ694. MR 667167, DOI 10.1090/S0002-9947-1982-0667167-5
- Johan Antoon Casper Kolk, The Selberg trace formula and asymptotic behaviour of spectra, Rijksuniversiteit te Utrecht, Utrecht, 1977. With a Dutch summary; Doctoral dissertation, University of Utrecht. MR 0476489
- Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
- Serge Lang, $\textrm {SL}_{2}(\textbf {R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
- R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp.ย 235โ252. MR 0249539
- Werner Mรผller, The trace class conjecture in the theory of automorphic forms, Ann. of Math. (2) 130 (1989), no.ย 3, 473โ529. MR 1025165, DOI 10.2307/1971453
- M. Scott Osborne and Garth Warner, The Selberg trace formula. I. $\Gamma$-rank one lattices, J. Reine Angew. Math. 324 (1981), 1โ113. MR 614517, DOI 10.1515/crll.1981.324.1
- M. Scott Osborne and Garth Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific J. Math. 106 (1983), no.ย 2, 307โ496. MR 699915, DOI 10.2140/pjm.1983.106.307
- Peter Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), no.ย 2, 229โ247. MR 675187, DOI 10.1016/0022-314X(82)90028-2
- Henrik Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, Progress in Mathematics, vol. 49, Birkhรคuser Boston, Inc., Boston, MA, 1984. MR 757178, DOI 10.1007/978-1-4612-5298-6 A. Selberg, Lectures on the trace formula, Univ. of Gottingen, 1954.
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. II, Springer-Verlag, Berlin, 1988. MR 955271, DOI 10.1007/978-1-4612-3820-1 A. B. Venkov, The Selberg trace formula for $SL(3,\mathbb {Z})$, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 37 (1973).
- D. I. Wallace, Conjugacy classes of hyperbolic matrices in $\textrm {Sl}(n,\,\textbf {Z})$ and ideal classes in an order, Trans. Amer. Math. Soc. 283 (1984), no.ย 1, 177โ184. MR 735415, DOI 10.1090/S0002-9947-1984-0735415-0
- D. I. Wallace, Explicit form of the hyperbolic term in the Selberg trace formula for $\textrm {Sl}(3,\textbf {Z})$ and Pellโs equation for hyperbolics in $\textrm {Sl}(3,\textbf {Z})$, J. Number Theory 24 (1986), no.ย 2, 127โ133. MR 863649, DOI 10.1016/0022-314X(86)90097-1 โ, A preliminary version of the Selberg trace formula for $SL(3,\mathbb {Z})\backslash SL(3,\mathbb {R})/SO(3,\mathbb {R})$, Contemp. Math. 53 (1986), 11-15.
- D. I. Wallace, Maximal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 29 (1988), no.ย 2, 101โ117. MR 945590, DOI 10.1016/0022-314X(88)90095-9
- D. I. Wallace, Terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$ associated to Eisenstein series coming from a maximal parabolic subgroup, Proc. Amer. Math. Soc. 106 (1989), no.ย 4, 875โ883. MR 963577, DOI 10.1090/S0002-9939-1989-0963577-9
- D. I. Wallace, Terms in the Selberg trace formula for $\textrm {SL}(3,{\scr Z})\backslash \textrm {SL}(3,{\scr R})/\textrm {SO}(3,{\scr R})$ associated to Eisenstein series coming from a minimal parabolic subgroup, Trans. Amer. Math. Soc. 327 (1991), no.ย 2, 781โ793. MR 1031979, DOI 10.1090/S0002-9947-1991-1031979-4 โ, The loxodromic term of the Selberg trace formula for $SL(3,\mathbb {Z})\backslash SL(3,\mathbb {R})/SO(3,\mathbb {R})$ (to appear).
- D. I. Wallace, Minimal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 32 (1989), no.ย 1, 1โ13. MR 1002111, DOI 10.1016/0022-314X(89)90094-2
- Garth Warner, Selbergโs trace formula for nonuniform lattices: the $R$-rank one case, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp.ย 1โ142. MR 535763
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 1-36
- MSC: Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1994-1184117-4
- MathSciNet review: 1184117