Eigenvalues and eigenspaces for the twisted Dirac operator over $\textrm {SU}(N,1)$ and $\textrm {Spin}(2N,1)$
HTML articles powered by AMS MathViewer
- by Esther Galina and Jorge Vargas
- Trans. Amer. Math. Soc. 345 (1994), 97-113
- DOI: https://doi.org/10.1090/S0002-9947-1994-1189792-6
- PDF | Request permission
Abstract:
Let X be a symmetric space of noncompact type whose isometry group is either $SU(n,1)$ or $Spin(2n,1)$. Then the Dirac operator D is defined on ${L^2}$-sections of certain homogeneous vector bundles over X. Using representation theory we obtain explicitly the eigenvalues of D and describe the eigenspaces in terms of the discrete series.References
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- Michael Atiyah and Wilfried Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1–62. MR 463358, DOI 10.1007/BF01389783
- Alain Connes and Henri Moscovici, The $L^{2}$-index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2) 115 (1982), no. 2, 291–330. MR 647808, DOI 10.2307/1971393
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889
- Joseph A. Wolf, Essential self-adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1972/73), 611–640. MR 311248, DOI 10.1512/iumj.1973.22.22051
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 97-113
- MSC: Primary 22E30; Secondary 22E45, 58G10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1189792-6
- MathSciNet review: 1189792