Braid groups and left distributive operations
HTML articles powered by AMS MathViewer
- by Patrick Dehornoy
- Trans. Amer. Math. Soc. 345 (1994), 115-150
- DOI: https://doi.org/10.1090/S0002-9947-1994-1214782-4
- PDF | Request permission
Abstract:
The decidability of the word problem for the free left distributive law is proved by introducing a structure group which describes the underlying identities. This group is closely connected with Artin’s braid group ${B_\infty }$. Braid colourings associated with free left distributive structures are used to show the existence of a unique ordering on the braids which is compatible with left translation and such that every generator ${\sigma _i}$ is preponderant over all ${\sigma _k}$ with $k > i$. This ordering is a linear ordering.References
- Joan S. Birman, Erratum: “Braids, links, and mapping class groups” (Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J., 1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1975. Based on lecture notes by James Cannon. MR 0425944
- E. Brieskorn, Automorphic sets and braids and singularities, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 45–115. MR 975077, DOI 10.1090/conm/078/975077 P. Cartier, Développements récents sur les groupes de tresses, applications ’a la topologie et à l’algèbre, Séminaire Bourbaki, exposé 716, 1989.
- Patrick Dehornoy, Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106 (1989), no. 3, 617–623. MR 969519, DOI 10.1090/S0002-9939-1989-0969519-4
- Patrick Dehornoy, Free distributive groupoids, J. Pure Appl. Algebra 61 (1989), no. 2, 123–146. MR 1025918, DOI 10.1016/0022-4049(89)90009-1
- Patrick Dehornoy, Sur la structure des gerbes libres, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 3, 143–148 (French, with English summary). MR 1005627
- Patrick Dehornoy, Problème de mots dans les gerbes libres, Theoret. Comput. Sci. 94 (1992), no. 2, 199–213 (French, with English summary). Discrete mathematics and applications to computer science (Marseille, 1989). MR 1157855, DOI 10.1016/0304-3975(92)90034-D
- Patrick Dehornoy, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc. 117 (1993), no. 2, 293–304. MR 1107919, DOI 10.1090/S0002-9939-1993-1107919-3 —, A canonical ordering for free left distributive magmas, Proc. Amer. Math. Soc. (to appear).
- Patrick Dehornoy, A normal form for the free left distributive law, Internat. J. Algebra Comput. 4 (1994), no. 4, 499–528. MR 1313125, DOI 10.1142/S0218196794000130 —, Reduction of braid words, preprint, 1993.
- Randall Dougherty, Critical points in an algebra of elementary embeddings, Ann. Pure Appl. Logic 65 (1993), no. 3, 211–241. MR 1263319, DOI 10.1016/0168-0072(93)90012-3
- Randall Dougherty and Thomas Jech, Finite left-distributive algebras and embedding algebras, Adv. Math. 130 (1997), no. 2, 201–241. MR 1472317, DOI 10.1006/aima.1997.1655
- Elsayed A. El-Rifai and H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 479–497. MR 1315459, DOI 10.1093/qmath/45.4.479 D. B. Epstein et al., Word processing in groups, Jones and Barlett, 1992. R. Fenn and C. Rourke, Racks and links in codimension 2, J. Knot Theory and its Ramifications (to appear).
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254. MR 248801, DOI 10.1093/qmath/20.1.235
- T. Kepka, Notes on left-distributive groupoids, Acta Univ. Carolin. Math. Phys. 22 (1981), no. 2, 23–37 (English, with Russian and Czech summaries). MR 654379
- Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73–116. MR 482431, DOI 10.1016/0003-4843(78)90031-1
- David Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), no. 1, 37–65. MR 638121, DOI 10.1016/0022-4049(82)90077-9
- David M. Larue, On braid words and irreflexivity, Algebra Universalis 31 (1994), no. 1, 104–112. MR 1250230, DOI 10.1007/BF01188182 R. Laver, Elementary embeddings of a rank into itself, Abstracts Amer. Math. Soc. 7 (1986), 6.
- Richard Laver, The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math. 91 (1992), no. 2, 209–231. MR 1149623, DOI 10.1016/0001-8708(92)90016-E
- Richard Laver, A division algorithm for the free left distributive algebra, Logic Colloquium ’90 (Helsinki, 1990) Lecture Notes Logic, vol. 2, Springer, Berlin, 1993, pp. 155–162. MR 1279840 —, Braid group actions on left distributive structures and well-orderings in the braid group, preprint, 1993.
- Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), no. 4, 28–46. MR 170925
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132 W. Thurston, Finite state algorithms for the braid group, preprint, 1988.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 115-150
- MSC: Primary 08A50; Secondary 20F36
- DOI: https://doi.org/10.1090/S0002-9947-1994-1214782-4
- MathSciNet review: 1214782