Théorème de Ney-Spitzer sur le dual de $\textrm {SU}(2)$
HTML articles powered by AMS MathViewer
- by Philippe Biane
- Trans. Amer. Math. Soc. 345 (1994), 179-194
- DOI: https://doi.org/10.1090/S0002-9947-1994-1225572-0
- PDF | Request permission
Abstract:
Let $\phi$ be a central, noneven, positive type function on ${\text {SU}}(2)$ with $\phi (e) < 1$. For any polynomial function p on ${\text {SU}}(2)$, let $V(p)$ be the left convolution operator by $p/(1 - \phi )$ on ${L^2}({\text {SU}}(2))$, we prove that $V(p)/V(1)$ is a pseudodifferential operator of order 0 and give an explicit formula for its principal symbol. This is interpreted in terms of Martin compactification of a quantum random walk.References
- Philippe Biane, Quantum random walk on the dual of $\textrm {SU}(n)$, Probab. Theory Related Fields 89 (1991), no. 1, 117–129. MR 1109477, DOI 10.1007/BF01225828
- Philippe Biane, Minuscule weights and random walks on lattices, Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 51–65. MR 1186654
- Ph. Biane, Équation de Choquet-Deny sur le dual d’un groupe compact, Probab. Theory Related Fields 94 (1992), no. 1, 39–51 (French, with English and French summaries). MR 1189084, DOI 10.1007/BF01222508
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0 A. Connes, Géométrie non-commutative, Interéditions, Paris, 1990. J. Deny, Sur l’équation de convolution $\mu = \mu \ast \sigma$, Séminaire de théorie du potentiel, 4$^e$ année 1959-1960, n$^\circ$ 5.
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173 A. W. Knapp, Representation theory of semi-simple Lie groups, Princeton Math. Ser., no. 36, Princeton, NJ, 1986.
- John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, 2nd ed., Graduate Texts in Mathematics, No. 40, Springer-Verlag, New York-Heidelberg-Berlin, 1976. With a chapter on Markov random fields, by David Griffeath. MR 0407981, DOI 10.1007/978-1-4684-9455-6
- P. Ney and F. Spitzer, The Martin boundary for random walk, Trans. Amer. Math. Soc. 121 (1966), 116–132. MR 195151, DOI 10.1090/S0002-9947-1966-0195151-8
- Correction: “A generalized Biane process” [in Séminaire de Probabilités, XXIV, 1988/89, 345–348, Lecture Notes in Math., 1426, Springer, Berlin, 1990; MR1071549 (92a:81093)] by K. R. Parthasarathy, Séminaire de Probabilités, XXV, Lecture Notes in Math., vol. 1485, Springer, Berlin, 1991, pp. 427 (French). MR 1187798, DOI 10.1007/BFb0100874
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- N. Ja. Vilenkin, Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by V. N. Singh. MR 0229863, DOI 10.1090/mmono/022
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 179-194
- MSC: Primary 60J50; Secondary 22E99, 47G30, 60B15, 81S25
- DOI: https://doi.org/10.1090/S0002-9947-1994-1225572-0
- MathSciNet review: 1225572