Lattice-ordered algebras that are subdirect products of valuation domains
HTML articles powered by AMS MathViewer
- by Melvin Henriksen, Suzanne Larson, Jorge Martinez and R. G. Woods
- Trans. Amer. Math. Soc. 345 (1994), 195-221
- DOI: https://doi.org/10.1090/S0002-9947-1994-1239640-0
- PDF | Request permission
Abstract:
An f-ring (i.e., a lattice-ordered ring that is a subdirect product of totally ordered rings) A is called an SV-ring if $A/P$ is a valuation domain for every prime ideal P of A . If M is a maximal $\ell$-ideal of A, then the rank of A at M is the number of minimal prime ideals of A contained in M , rank of A is the sup of the ranks of A at each of its maximal $\ell$-ideals. If the latter is a positive integer, then A is said to have finite rank, and if $A = C(X)$ is the ring of all real-valued continuous functions on a Tychonoff space, the rank of X is defined to be the rank of the f-ring $C(X)$, and X is called an SV-space if $C(X)$ is an ST-ring. X has finite rank k iff k is the maximal number of pairwise disjoint cozero sets with a point common to all of their closures. In general f-rings these two concepts are unrelated, but if A is uniformly complete (in particular, if $A = C(X)$) then if A is an SV-ring then it has finite rank. Showing that this latter holds makes use of the theory of finite-valued lattice-ordered (abelian) groups. These two kinds of rings are investigated with an emphasis on the uniformly complete case. Fairly powerful machinery seems to have to be used, and even then, we do not know if there is a compact space X of finite rank that fails to be an SV-space.References
- Marlow Anderson and Todd Feil, Lattice-ordered groups, Reidel Texts in the Mathematical Sciences, D. Reidel Publishing Co., Dordrecht, 1988. An introduction. MR 937703, DOI 10.1007/978-94-009-2871-8
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653
- Gregory L. Cherlin and Max A. Dickmann, Real closed rings. I. Residue rings of rings of continuous functions, Fund. Math. 126 (1986), no. 2, 147–183. MR 843243, DOI 10.4064/fm-126-2-147-183
- Paul Conrad and Jorge Martinez, Complemented lattice-ordered groups, Indag. Math. (N.S.) 1 (1990), no. 3, 281–297. MR 1075880, DOI 10.1016/0019-3577(90)90019-J
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267
- Soo Bong Chae and Jeffrey H. Smith, Remote points and $G$-spaces, Topology Appl. 11 (1980), no. 3, 243–246. MR 585269, DOI 10.1016/0166-8641(80)90023-1
- Alan Dow, On $F$-spaces and $F^{\prime }$-spaces, Pacific J. Math. 108 (1983), no. 2, 275–284. MR 713737
- Eric K. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.) 188 (1981), 45. MR 627526
- F. Dashiell, A. Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canadian J. Math. 32 (1980), no. 3, 657–685. MR 586984, DOI 10.4153/CJM-1980-052-0
- A. Dow, M. Henriksen, Ralph Kopperman, and J. Vermeer, The space of minimal prime ideals of $C(X)$ need not be basically disconnected, Proc. Amer. Math. Soc. 104 (1988), no. 1, 317–320. MR 958091, DOI 10.1090/S0002-9939-1988-0958091-X
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366–391. MR 78980, DOI 10.1090/S0002-9947-1956-0078980-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, Graduate Texts in Mathematics, No. 43, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960 edition. MR 0407579
- A. M. W. Glass and W. Charles Holland (eds.), Lattice-ordered groups, Mathematics and its Applications, vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1989. Advances and techniques. MR 1036072, DOI 10.1007/978-94-009-2283-9
- Melvin Henriksen, Semiprime ideals of $f$-rings, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 401–409. MR 0480256
- M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110–130. MR 194880, DOI 10.1090/S0002-9947-1965-0194880-9
- M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961/62), 73–94. MR 133698, DOI 10.4064/fm-50-1-73-94
- M. Henriksen and R. Kopperman, A general theory of structure spaces with applications to spaces of prime ideals, Algebra Universalis 28 (1991), no. 3, 349–376. MR 1120618, DOI 10.1007/BF01191086
- Melvin Henriksen and Suzanne Larson, Semiprime $f$-rings that are subdirect products of valuation domains, Ordered algebraic structures (Gainesville, FL, 1991) Kluwer Acad. Publ., Dordrecht, 1993, pp. 159–168. MR 1247304
- Anthony W. Hager and Jorge Martinez, Fraction-dense algebras and spaces, Canad. J. Math. 45 (1993), no. 5, 977–996. MR 1239910, DOI 10.4153/CJM-1993-054-6
- C. B. Huijsmans and B. de Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269 (1982), no. 1, 225–245. MR 637036, DOI 10.1090/S0002-9947-1982-0637036-5
- Charles B. Huijsmans and Ben de Pagter, Maximal $d$-ideals in a Riesz space, Canad. J. Math. 35 (1983), no. 6, 1010–1029. MR 738841, DOI 10.4153/CJM-1983-056-6
- Anthony W. Hager and Lewis C. Robertson, Representing and ringifying a Riesz space, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 411–431. MR 0482728
- M. Henriksen and F. A. Smith, Sums of $z$-ideals and semiprime ideals, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 272–278. MR 698424
- M. Henriksen, J. Vermeer, and R. G. Woods, Quasi $F$-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), no. 2, 779–803. MR 902798, DOI 10.1090/S0002-9947-1987-0902798-0
- Melvin Henriksen and Richard Wilson, When is $C(X)/P$ a valuation ring for every prime ideal $P$?, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 175–180. MR 1173255, DOI 10.1016/0166-8641(92)90091-D
- M. Henriksen and R. G. Wilson, Almost discrete SV-spaces, Topology Appl. 46 (1992), no. 2, 89–97. MR 1184107, DOI 10.1016/0166-8641(92)90123-H
- Kwangil Koh, On functional representations of a ring without nilpotent elements, Canad. Math. Bull. 14 (1971), 349–352. MR 369440, DOI 10.4153/CMB-1971-063-7 W. Luxemburg and Zaanen, Riesz spaces. I, North-Holland, Amsterdam, 1971.
- Jorge Martinez and Scott Woodward, Bezout and Prüfer $f$-rings, Comm. Algebra 20 (1992), no. 10, 2975–2989. MR 1179272, DOI 10.1080/00927879208824500
- Jack R. Porter and R. Grant Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York, 1988. MR 918341, DOI 10.1007/978-1-4612-3712-9
- František Šik, Zur Theorie der halbgeordneten Gruppen, Czechoslovak Math. J. 6(81) (1956), 1–25 (Russian, with German summary). MR 81907
- H. Subramanian, $l$-prime ideals in $f$-rings, Bull. Soc. Math. France 95 (1967), 193–203. MR 223284
- N. K. Thakare and S. K. Nimbhorkar, Space of minimal prime ideals of a ring without nilpotent elements, J. Pure Appl. Algebra 27 (1983), no. 1, 75–85. MR 680886, DOI 10.1016/0022-4049(83)90031-2 S. Woodward, On f-rings that are rich in idempotents, Univ. of Florida dissertation, 1992.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 195-221
- MSC: Primary 06F25; Secondary 54C40
- DOI: https://doi.org/10.1090/S0002-9947-1994-1239640-0
- MathSciNet review: 1239640