Connections with exotic holonomy
HTML articles powered by AMS MathViewer
- by Lorenz J. Schwachhöfer
- Trans. Amer. Math. Soc. 345 (1994), 293-321
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250825-X
- PDF | Request permission
Abstract:
Berger [Ber] partially classified the possible irreducible holonomy representations of torsion free connections on the tangent bundle of a manifold. However, it was shown by Bryant [Bry] that Berger’s list is incomplete. Connections whose holonomy is not contained on Berger’s list are called exotic. We investigate a certain 4-dimensional exotic holonomy representation of $Sl(2,\mathbb {R})$. We show that connections with this holonomy are never complete and do not exist on compact manifolds. We give explicit descriptions of these connections on an open dense set and compute their groups of symmetry.References
- D. V. Alekseevskiĭ, Compact quaternion spaces, Funkcional. Anal. i Priložen. 2 (1968), no. 2, 11–20 (Russian). MR 0231314
- Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330 (French). MR 79806, DOI 10.24033/bsmf.1464
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Robert L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), no. 3, 525–576. MR 916718, DOI 10.2307/1971360
- Robert L. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory, Complex geometry and Lie theory (Sundance, UT, 1989) Proc. Sympos. Pure Math., vol. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 33–88. MR 1141197, DOI 10.1090/pspum/053/1141197
- R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. MR 1083148, DOI 10.1007/978-1-4613-9714-4
- E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269–294 (French). MR 543218, DOI 10.24033/asens.1367 S. Kobayashi and K. Nomizu, Foundations of differential geometry, vols. 1 and 2, Interscience, 1969.
- James Simons, On the transitivity of holonomy systems, Ann. of Math. (2) 76 (1962), 213–234. MR 148010, DOI 10.2307/1970273
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 293-321
- MSC: Primary 53C05; Secondary 53C30
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250825-X
- MathSciNet review: 1250825