The spectra of random pseudo-differential operators
HTML articles powered by AMS MathViewer
- by Jingbo Xia
- Trans. Amer. Math. Soc. 345 (1994), 381-411
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250828-5
- PDF | Request permission
Abstract:
We study the spectra of random pseudo-differential operators generated by the same symbol function on different ${L^2}$-spaces. Our results generalize the spectral coincidence theorem of S. Kozlov and M. Shubin (Math. USSRSb. 51 (1985), 455-471) for elliptic operators of positive order associated with ergodic systems. Because of our new approach, we are able to treat operators of arbitrary order and associated with arbitrary dynamical systems. Furthermore, we characterize the spectra of these operators in terms of certain naturally obtained Borel measures on R.References
- William Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217โ243. MR 0348518, DOI 10.1016/0022-1236(74)90034-2 R. Biktashev and A. Mishchenko, Spectra of elliptic unbounded pseudodifferential operators over ${C^\infty }$-algebras, Moscow Univ. Math. Bull. 35 (1980), 59-62.
- M. Burnat, Die Spektraldarstellung einiger Differentialoperatoren mit periodischen Koeffiezienten im Raume der fastperiodischen Funktionen, Studia Math. 25 (1964/65), 33โ64 (German). MR 181791, DOI 10.4064/sm-25-1-33-64
- L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and I. M. Singer, $C^{\ast }$-algebras of operators on a half-space. II. Index theory, Inst. Hautes รtudes Sci. Publ. Math. 40 (1971), 69โ79. MR 358418
- L. A. Coburn, R. D. Moyer, and I. M. Singer, $C^*$-algebras of almost periodic pseudo-differential operators, Acta Math. 130 (1973), 279โ307. MR 415407, DOI 10.1007/BF02392269 P. Dedik and M. Shubin, Random pseudo-differential operators and the stabilization of solutions of parabolic equations with random coefficients, Math. USSR-Sb. 41 (1982), 33-52.
- R. G. Douglas, On the $C^{\ast }$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no.ย 3-4, 143โ151. MR 394296, DOI 10.1007/BF02392163
- Frank Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33โ59. MR 209771, DOI 10.1007/BF02392475
- Jerome Kaminker and Jingbo Xia, The spectrum of operators elliptic along the orbits of $\textbf {R}^n$ actions, Comm. Math. Phys. 110 (1987), no.ย 3, 427โ438. MR 891946
- S. M. Kozlov and M. A. Shubin, Coincidence of spectra of random elliptic operators, Mat. Sb. (N.S.) 123(165) (1984), no.ย 4, 460โ476 (Russian). MR 740673
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no.ย 2, 214โ252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- Paul S. Muhly, Ian F. Putnam, and Jingbo Xia, On the $K$-theory of some $C^*$-algebras of Toeplitz and singular integral operators, J. Funct. Anal. 110 (1992), no.ย 1, 161โ225. MR 1190423, DOI 10.1016/0022-1236(92)90046-L
- Paul S. Muhly and Jingbo Xia, $C^*$-algebras of singular integral operators and Toeplitz operators associated with $n$-dimensional flows, Internat. J. Math. 3 (1992), no.ย 4, 525โ579. MR 1168360, DOI 10.1142/S0129167X92000254
- A. A. Pankov, On the theory of almost-periodic pseudodifferential operators, Ukrain. Mat. Zh. 33 (1981), no.ย 5, 615โ619, 716 (Russian). MR 633733 M. Shubin, The essential self-adjointness of uniformly hypoelliptic operators, Moscow Univ. Math. Bull. 30 (1975), 147-150. โ, Theorems on the coincidence of the spectra of a pseudo-differential operator in the spaces ${L^2}({{\mathbf {R}}^n})$ and ${B^2}({{\mathbf {R}}^n})$, Siberian Math. J. 17 (1976), 158-170.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 381-411
- MSC: Primary 47G30; Secondary 35R60, 35S99, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250828-5
- MathSciNet review: 1250828