Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger’s theorem in $\textbf {R}^ {2n}$
HTML articles powered by AMS MathViewer
- by Jia Zu Zhou
- Trans. Amer. Math. Soc. 345 (1994), 243-262
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250829-7
- PDF | Request permission
Abstract:
We first discuss the theory of hypersurfaces and submanifolds in the m-dimensional Euclidean space leading up to high dimensional analogues of the classical Euler’s and Meusnier’s theorems. Then we deduce the kinematic formulas for powers of mean curvature of the $(m - 2)$-dimensional intersection submanifold ${S_0} \cap g{S_1}$ of two ${C^2}$-smooth hypersurfaces ${S_0}$, ${S_1}$, i.e., ${\smallint _G}({\smallint _{{S_0} \cap g{S_1}}}{H^{2k}}d\sigma )dg$. Many well-known results, for example, the C-S. Chen kinematic formula and Crofton type formulas are easy consequences of our kinematic formulas. As direct applications of our formulas, we obtain analogues of Hadwiger’s theorem in ${\mathbb {R}^{2n}}$, i.e., sufficient conditions for one domain ${K_\beta }$ to contain, or to be contained in, another domain ${K_\alpha }$.References
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
- Shiing-shen Chern, On the kinematic formula in the Euclidean space of $n$ dimensions, Amer. J. Math. 74 (1952), 227–236. MR 47353, DOI 10.2307/2372080
- Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, DOI 10.2307/1969302 Delin Ren, Introduction to integral geometry, Shanghai Press of Sciences & Technology, 1987.
- H. Hadwiger, Überdeckung ebener Bereiche durch Kreise und Quadrate, Comment. Math. Helv. 13 (1941), 195–200 (German). MR 4995, DOI 10.1007/BF01378060
- H. Hadwiger, Gegenseitige Bedeckbarkeit zweier Eibereiche und Isoperimetrie, Vierteljschr. Naturforsch. Ges. Zürich 86 (1941), 152–156 (German). MR 7274
- Gao Yong Zhang, A sufficient condition for one convex body containing another, Chinese Ann. Math. Ser. B 9 (1988), no. 4, 447–451. A Chinese summary appears in Chinese Ann. Math. Ser. A 9 (1988), no. 5, 635. MR 998651
- Bang-yen Chen, Geometry of submanifolds, Pure and Applied Mathematics, No. 22, Marcel Dekker, Inc., New York, 1973. MR 0353212
- Jia Zu Zhou, The sufficient condition for a convex body to enclose another in $\textbf {R}^4$, Proc. Amer. Math. Soc. 121 (1994), no. 3, 907–913. MR 1184090, DOI 10.1090/S0002-9939-1994-1184090-4 —, Generalizations of Hadwiger’s theorem and possibilities for a convex domain to fit another in ${\mathbb {R}^3}$, (submitted). —, Analogues of Hadwiger’s theorem in space ${\mathbb {R}^n}$ and sufficient conditions for a convex domain to enclose another, Acta Math. Sinica (to appear). —, A kinematic formula and analogues of Hadwiger’s theorem in space, Contemporary Math., vol. 140, Amer. Math. Soc., Providence, R.I., 1992, pp. 159-167.
- P. R. Goodey, Connectivity and freely rolling convex bodies, Mathematika 29 (1982), no. 2, 249–259 (1983). MR 696880, DOI 10.1112/S002557930001233X
- Ralph Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106 (1993), no. 509, vi+69. MR 1169230, DOI 10.1090/memo/0509
- Chang-shing Chen, On the kinematic formula of square of mean curvature vector, Indiana Univ. Math. J. 22 (1972/73), 1163–1169. MR 313977, DOI 10.1512/iumj.1973.22.22096 Michael Spivak, A comprehensive introduction to differential geometry, Publish or Perish, 1979. Jiazu Zhou, When can one domain enclose another in space, J. Austral. Math. Soc. (to appear).
- Hermann Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939), no. 2, 461–472. MR 1507388, DOI 10.2307/2371513
- Eric L. Grinberg, Isoperimetric inequalities and identities for $k$-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75–86. MR 1125008, DOI 10.1007/BF01445191
- B. Teissier, Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 85–105. MR 645731
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- John E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. 124 (1966), 480–517. MR 202099, DOI 10.1090/S0002-9947-1966-0202099-9
- Theodore Shifrin, The kinematic formula in complex integral geometry, Trans. Amer. Math. Soc. 264 (1981), no. 2, 255–293. MR 603763, DOI 10.1090/S0002-9947-1981-0603763-8
- P. R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 25–34. MR 684271, DOI 10.1017/S0305004100060291
- Shiing-shen Chern, On the kinematic formula in integral geometry, J. Math. Mech. 16 (1966), 101–118. MR 0198406, DOI 10.1512/iumj.1967.16.16006
- Ralph Howard, Classical integral geometry in Riemannian homogeneous spaces, Integral geometry (Brunswick, Maine, 1984) Contemp. Math., vol. 63, Amer. Math. Soc., Providence, RI, 1987, pp. 179–204. MR 876319, DOI 10.1090/conm/063/876319 E. Grinberg, Delin Ren and Jiazu Zhou, The isoperimetric inequality and the containment problem in a plane of constant curvature, (submitted). Jiazu Zhou, The containment problem in the 3-space of constant curvature, (submitted).
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 243-262
- MSC: Primary 52A22; Secondary 51M16
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250829-7
- MathSciNet review: 1250829