Asymptotic measures for skew products of Bernoulli shifts with generalized north pole–south pole diffeomorphisms
HTML articles powered by AMS MathViewer
- by D. K. Molinek
- Trans. Amer. Math. Soc. 345 (1994), 263-291
- DOI: https://doi.org/10.1090/S0002-9947-1994-1254191-5
- PDF | Request permission
Abstract:
We study asymptotic measures for a certain class of dynamical systems. In particular, for $T:{\Sigma _2} \times M \to {\Sigma _2} \times M$, a skew product of the Bernoulli shift with a generalized north pole-south pole diffeomorphism, we describe the limits of the following two sequences of measures: (1) iterates under T of the product of Bernoulli measure with Lebesgue measure, $T_\ast ^n(\mu \times m)$, and (2) the averages of iterates of point mass measures, $\frac {1}{n}\Sigma _{k = 0}^{n - 1}{\delta _{{T^k}(w,x)}}$. We give conditions for the limit of each sequence to exist. We also determine the subsequential limits in case the sequence does not converge. We exploit several properties of null recurrent Markov Chains and apply them to the symmetric random walk on the integers. We also make use of Strassen’s Theorem as an aid in determining subsequential limits.References
- Jon Aaronson, Manfred Denker, and Albert M. Fisher, Second order ergodic theorems for ergodic transformations of infinite measure spaces, Proc. Amer. Math. Soc. 114 (1992), no. 1, 115–127. MR 1099339, DOI 10.1090/S0002-9939-1992-1099339-4
- R. Abraham and S. Smale, Nongenericity of $\Omega$-stability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 5–8. MR 0271986
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279 —, On Axiom A diffeomorphisms, CBMS Regional Conf. Ser. Math., no. 35, Amer. Math. Soc., Providence, RI, 1977.
- Kai Lai Chung, Elementary probability theory with stochastic processes, 3rd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979. MR 560506, DOI 10.1007/978-1-4684-9346-7
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X
- Yuri Kifer, Random perturbations of dynamical systems, Progress in Probability and Statistics, vol. 16, Birkhäuser Boston, Inc., Boston, MA, 1988. MR 1015933, DOI 10.1007/978-1-4615-8181-9
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- Brian Marcus and Sheldon Newhouse, Measures of maximal entropy for a class of skew products, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 105–125. MR 550415 D. K. Molinek, Asymptotic measures for skew products of Bernoulli shifts with Morse-Smale diffeomorphisms, Ph.D. Thesis, Univ. of North Carolina at Chapel Hill, 1992.
- Sheldon E. Newhouse, Lectures on dynamical systems, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 1–114. MR 589590
- Sheldon E. Newhouse and Lai-Sang Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 611–629. MR 730289, DOI 10.1007/BFb0061436
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- David Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619–654. MR 415683, DOI 10.2307/2373810
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- A. N. Shiryayev, Probability, Graduate Texts in Mathematics, vol. 95, Springer-Verlag, New York, 1984. Translated from the Russian by R. P. Boas. MR 737192, DOI 10.1007/978-1-4899-0018-0
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, DOI 10.1007/BF00534910
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
- Lai-Sang Young, Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 311–319. MR 857204, DOI 10.1017/S0143385700003473
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 263-291
- MSC: Primary 28D05; Secondary 58F03, 58F11, 60F05
- DOI: https://doi.org/10.1090/S0002-9947-1994-1254191-5
- MathSciNet review: 1254191