Writing integers as sums of products
HTML articles powered by AMS MathViewer
- by Charles E. Chace
- Trans. Amer. Math. Soc. 345 (1994), 367-379
- DOI: https://doi.org/10.1090/S0002-9947-1994-1257641-3
- PDF | Request permission
Abstract:
In this paper we obtain an asymptotic expression for the number of ways of writing an integer N as a sum of k products of l factors, valid for $k \geq 3$ and $l \geq 2$. The proof is an application of the Hardy-Littlewood method, and uses recent results from the divisor problem for arithmetic progressions.References
- Charles E. Chace, The divisor problem for arithmetic progressions with small modulus, Acta Arith. 61 (1992), no. 1, 35–50. MR 1153920, DOI 10.4064/aa-61-1-35-50
- H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005. With a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman; Edited and prepared for publication by T. D. Browning. MR 2152164, DOI 10.1017/CBO9780511542893 T. Estermann, On the representations of a number as the sums of three products, Proc. London Math. Soc. (2) 29 (1929), 453-478. —, On the representations of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1984.
- D. R. Heath-Brown, The divisor function $d_3(n)$ in arithmetic progressions, Acta Arith. 47 (1986), no. 1, 29–56. MR 866901, DOI 10.4064/aa-47-1-29-56
- Ju. V. Linnik, The dispersion method in binary additive problems, American Mathematical Society, Providence, R.I., 1963. Translated by S. Schuur. MR 0168543
- Kohji Matsumoto, A remark on Smith’s result on a divisor problem in arithmetic progressions, Nagoya Math. J. 98 (1985), 37–42. MR 792769, DOI 10.1017/S0027763000021346
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR 628618
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 367-379
- MSC: Primary 11P55; Secondary 11D85, 11N37
- DOI: https://doi.org/10.1090/S0002-9947-1994-1257641-3
- MathSciNet review: 1257641