Differential equations for symmetric generalized ultraspherical polynomials
HTML articles powered by AMS MathViewer
- by Roelof Koekoek
- Trans. Amer. Math. Soc. 345 (1994), 47-72
- DOI: https://doi.org/10.1090/S0002-9947-1994-1260202-3
- PDF | Request permission
Abstract:
We look for differential equations satisfied by the generalized Jacobi polynomials $\{ P_n^{\alpha ,\beta ,M,N}(x)\} _{n = 0}^\infty$ which are orthogonal on the interval $[- 1,1]$ with respect to the weight function \[ \frac {{\Gamma (\alpha + \beta + 2)}}{{{2^{\alpha + \beta + 1}}\Gamma (\alpha + 1)\Gamma (\beta + 1)}}{(1 - x)^\alpha }{(1 + x)^\beta } + M\delta (x + 1) + N\delta (x - 1),\] where $\alpha > - 1$, $\beta > - 1$, $M \geq 0$, and $N \geq 0$. In the special case that $\beta = \alpha$ and $N = M$ we find all differential equations of the form \[ \sum \limits _{i = 0}^\infty {{c_i}(x){y^{(i)}}(x) = 0,\quad y(x) = P_n^{\alpha ,\alpha ,M,M}(x),} \] where the coefficients $\{ {c_i}(x)\} _{i = 1}^\infty$ are independent of the degree n. We show that if $M > 0$ only for nonnegative integer values of $\alpha$ there exists exactly one differential equation which is of finite order $2\alpha + 4$. By using quadratic transformations we also obtain differential equations for the polynomials $\{ P_n^{\alpha , \pm 1/2,0,N}(x)\} _{n = 0}^\infty$ for all $\alpha > - 1$ and $N \geq 0$.References
- T. J. I’a. Bromwich, An introduction to the theory of infinite series, 2nd ed., Macmillan, New York, 1959.
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 0481884 A. Erdélyi et al. (Eds.), Higher transcendental functions, Bateman Manuscript Project, Vol. I, McGraw-Hill, New York, 1953.
- W. N. Everitt and L. L. Littlejohn, Orthogonal polynomials and spectral theory: a survey, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 21–55. MR 1270216
- J. Koekoek and R. Koekoek, On a differential equation for Koornwinder’s generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1045–1054. MR 1047003, DOI 10.1090/S0002-9939-1991-1047003-9
- Roelof Koekoek, The search for differential equations for certain sets of orthogonal polynomials, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 111–119. MR 1256017, DOI 10.1016/0377-0427(93)90141-W
- Tom H. Koornwinder, Orthogonal polynomials with weight function $(1-x)^{\alpha }(1+x)^{\beta }+M\delta (x+1)+N\delta (x-1)$, Canad. Math. Bull. 27 (1984), no. 2, 205–214. MR 740416, DOI 10.4153/CMB-1984-030-7
- Allan M. Krall, Orthogonal polynomials satisfying fourth order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 87 (1980/81), no. 3-4, 271–288. MR 606336, DOI 10.1017/S0308210500015213
- A. M. Krall and L. L. Littlejohn, On the classification of differential equations having orthogonal polynomial solutions. II, Ann. Mat. Pura Appl. (4) 149 (1987), 77–102. MR 932778, DOI 10.1007/BF01773927
- H. L. Krall, Certain differential equations for Tchebycheff polynomials, Duke Math. J. 4 (1938), no. 4, 705–718. MR 1546091, DOI 10.1215/S0012-7094-38-00462-4
- H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, Pennsylvania State College Studies 1940 (1940), no. 6, 24. MR 2679
- Lance L. Littlejohn, The Krall polynomials: a new class of orthogonal polynomials, Quaestiones Math. 5 (1982/83), no. 3, 255–265. MR 690030
- Lance L. Littlejohn, The Krall polynomials as solutions to a second order differential equation, Canad. Math. Bull. 26 (1983), no. 4, 410–417. MR 716580, DOI 10.4153/CMB-1983-068-9
- Lance L. Littlejohn, On the classification of differential equations having orthogonal polynomial solutions, Ann. Mat. Pura Appl. (4) 138 (1984), 35–53. MR 779537, DOI 10.1007/BF01762538
- Lance L. Littlejohn and Samuel D. Shore, Nonclassical orthogonal polynomials as solutions to second order differential equations, Canad. Math. Bull. 25 (1982), no. 3, 291–295. MR 668944, DOI 10.4153/CMB-1982-040-2 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939; 4th ed., 1975.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 47-72
- MSC: Primary 33C45; Secondary 34B24, 34L10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1260202-3
- MathSciNet review: 1260202