A family of real $2^ n$-tic fields
HTML articles powered by AMS MathViewer
- by Yuan Yuan Shen and Lawrence C. Washington
- Trans. Amer. Math. Soc. 345 (1994), 413-434
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264151-6
- PDF | Request permission
Abstract:
We study the family of polynomials \[ {P_n}(X;a) = \Re ({(X + i)^{{2^n}}}) - \frac {a}{{{2^n}}}\Im ({(X + i)^{{2^n}}})\] and determine when ${P_n}(X;a)$, $a \in \mathbb {Z}$, is irreducible. The roots are all real and are permuted cyclically by a linear fractional transformation defined over the real subfield of the ${2^n}$th cyclotomic field. The families of fields we obtain are natural extensions of those studied by M.-N. Gras and Y.-Y. Shen, but in general the present fields are non-Galois for $n \geq 4$. From the roots we obtain a set of independent units for the Galois closure that generate an "almost fundamental piece" of the full group of units. Finally, we discuss the two examples where our fields are Galois, namely $a = \pm {2^n}$ and $a = \pm {2^4} \bullet 239$.References
- J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959.
- Gary Cornell and Lawrence C. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), no. 3, 260–274. MR 814005, DOI 10.1016/0022-314X(85)90055-1
- Marie-Nicole Gras, Special units in real cyclic sextic fields, Math. Comp. 48 (1987), no. 177, 179–182. MR 866107, DOI 10.1090/S0025-5718-1987-0866107-1 —, Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb {Q}$, Publ. Math. Besançon, 1977-1978, fasc 2, 53 pp. Andrew J. Lazaras, The class number and cyclotomy of simplest quartic fields, Ph.D. thesis, Univ. of California, Berkeley, 1989.
- Andrew J. Lazarus, Class numbers of simplest quartic fields, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 313–323. MR 1106670
- Andrew J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J. 121 (1991), 1–13. MR 1096465, DOI 10.1017/S0027763000003378
- F. J. van der Linden, Class number computations of real abelian number fields, Math. Comp. 39 (1982), no. 160, 693–707. MR 669662, DOI 10.1090/S0025-5718-1982-0669662-5
- Wilhelm Ljunggren, Zur Theorie der Gleichung $x^2+1=Dy^4$, Avh. Norske Vid.-Akad. Oslo I 1942 (1942), no. 5, 27 (German). MR 16375
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8 Y.-Y. Shen, Units of real cyclic octic fields, Ph.D. thesis, Univ. of Maryland at College Park, 1988.
- Yuan Yuan Shen, Unit groups and class numbers of real cyclic octic fields, Trans. Amer. Math. Soc. 326 (1991), no. 1, 179–209. MR 1031243, DOI 10.1090/S0002-9947-1991-1031243-3
- Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren’s equation $X^2+1=2Y^4$, J. Number Theory 37 (1991), no. 2, 123–132. MR 1092598, DOI 10.1016/S0022-314X(05)80029-0
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 413-434
- MSC: Primary 11R21; Secondary 11R09, 11R27
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264151-6
- MathSciNet review: 1264151