Hilbert 90 theorems over division rings
HTML articles powered by AMS MathViewer
- by T. Y. Lam and A. Leroy
- Trans. Amer. Math. Soc. 345 (1994), 595-622
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181184-9
- PDF | Request permission
Abstract:
Hilbertâs Satz 90 is well-known for cyclic extensions of fields, but attempts at generalizations to the case of division rings have only been partly successful. Jacobsonâs criterion for logarithmic derivatives for fields equipped with derivations is formally an analogue of Satz 90, but the exact relationship between the two was apparently not known. In this paper, we study triples (K, S, D) where S is an endomorphism of the division ring K, and D is an S-derivation. Using the technique of Ore extensions $K[t,S,D]$, we characterize the notion of (S, D)-algebraicity for elements $a \in K$, and give an effective criterion for two elements $a,b \in K$ to be (S, D)-conjugate, in the case when the (S, D)-conjugacy class of a is algebraic. This criterion amounts to a general Hilbert 90 Theorem for division rings in the (K, S, D)-setting, subsuming and extending all known forms of Hilbert 90 in the literature, including the aforementioned Jacobson Criterion. Two of the working tools used in the paper, the Conjugation Theorem (2.2) and the Composite Function Theorem (2.3), are of independent interest in the theory of Ore extensions.References
- A. S. Amitsur, A generalization of a theorem on linear differential equations, Bull. Amer. Math. Soc. 54 (1948), 937â941. MR 26991, DOI 10.1090/S0002-9904-1948-09102-9
- S. A. Amitsur, Derivations in simple rings, Proc. London Math. Soc. (3) 7 (1957), 87â112. MR 88480, DOI 10.1112/plms/s3-7.1.87
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 G. Cauchon, Les T-anneaux et les anneaux à identités polynomiales noethériens, ThÚse, Orsay, 1977.
- Paul Moritz Cohn, Skew field constructions, London Mathematical Society Lecture Note Series, No. 27, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0463237 D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresber. Deutsch. Math.-Verein. 4 (1987), 175-546 (See also Gesammelte Abhandlungen, Vol. 1, Chelsea, New York, 1965, pp. 63-361.
- Nathan Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206â224. MR 1501922, DOI 10.1090/S0002-9947-1937-1501922-7 â, Lectures in abstract algebra, Vol. 3, Van Nostrand, 1964. (Reprinted as Graduate Texts in Math., Vol. 32, Springer-Verlag, Berlin, Heidelberg and New York.). â, The theory of rings (4th printing), Math. Surveys, vol. II, Amer. Math. Soc., Providence, R.I., 1968.
- T. Y. Lam and A. Leroy, Vandermonde and Wronskian matrices over division rings, J. Algebra 119 (1988), no. 2, 308â336. MR 971137, DOI 10.1016/0021-8693(88)90063-4
- T. Y. Lam and AndrĂ© Leroy, Algebraic conjugacy classes and skew polynomial rings, Perspectives in ring theory (Antwerp, 1987) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 153â203. MR 1048406
- T. Y. Lam, K. H. Leung, A. Leroy, and J. Matczuk, Invariant and semi-invariant polynomials in skew polynomial rings, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989) Israel Math. Conf. Proc., vol. 1, Weizmann, Jerusalem, 1989, pp. 247â261. MR 1029317
- T. Y. Lam and A. Leroy, Homomorphisms between Ore extensions, Azumaya algebras, actions, and modules (Bloomington, IN, 1990) Contemp. Math., vol. 124, Amer. Math. Soc., Providence, RI, 1992, pp. 83â110. MR 1144030, DOI 10.1090/conm/124/1144030
- T. Y. Lam, A general theory of Vandermonde matrices, Exposition. Math. 4 (1986), no. 3, 193â215. MR 880123 B. Lemonnier, Dimensions de Krull et codĂ©viations, quelques applications en thĂ©orie des modules, ThĂšse, Poitiers (1984).
- A. Leroy, J.-P. Tignol, and P. Van Praag, Sur les anneaux simples diffĂ©rentiels, Comm. Algebra 10 (1982), no. 12, 1307â1314 (French). MR 660346, DOI 10.1080/00927878208822777 A. Leroy, DĂ©rivations algĂ©briques, ThĂšse, UniversitĂ© de lâEtat Ă Mons, 1985.
- AndrĂ© Leroy, DĂ©rivĂ©es logarithmiques pour une $S$-dĂ©rivation algĂ©brique, Comm. Algebra 13 (1985), no. 1, 85â99 (French). MR 768087, DOI 10.1080/00927878508823149 J. McConnell and J.C. Robson, Noetherian rings, Wiley, London and New York, 1988.
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480â508. MR 1503119, DOI 10.2307/1968173
- Constance Reid, Hilbert, Springer-Verlag, New York-Berlin, 1970 (German). With an appreciation of Hilbertâs mathematical work by Hermann Weyl. MR 0270884
- Louis H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 595-622
- MSC: Primary 12E15; Secondary 16K40, 16S36
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181184-9
- MathSciNet review: 1181184