Measurable quotients of unipotent translations on homogeneous spaces
HTML articles powered by AMS MathViewer
- by Dave Witte
- Trans. Amer. Math. Soc. 345 (1994), 577-594
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181187-4
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 349 (1997), 4685-4688.
Abstract:
Let U be a nilpotent, unipotent subgroup of a Lie group G, and let $\Gamma$ be a closed subgroup of G. Marina Ratner showed that every ergodic U-invariant probability measure on the homogeneous space $\Gamma \backslash G$ is of a simple algebraic form. We use this fundamental new result to show that every measurable quotient of the U-action on $\Gamma \backslash G$ is of a simple algebraic form. Roughly speaking, any quotient is a double-coset space $\Lambda \backslash G/K$.References
- L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968), 295–313. MR 224745, DOI 10.1016/0021-8693(68)90061-6
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
- Jonathan Brezin and Calvin C. Moore, Flows on homogeneous spaces: a new look, Amer. J. Math. 103 (1981), no. 3, 571–613. MR 618325, DOI 10.2307/2374105
- S. G. Dani, On ergodic quasi-invariant measures of group automorphism, Israel J. Math. 43 (1982), no. 1, 62–74. MR 728879, DOI 10.1007/BF02761685
- A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 531–557. MR 922364, DOI 10.1017/S0143385700004193
- Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. MR 620024
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
- Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
- Calvin C. Moore, The Mautner phenomenon for general unitary representations, Pacific J. Math. 86 (1980), no. 1, 155–169. MR 586875
- G. D. Mostow, On the fundamental group of a homogeneous space, Ann. of Math. (2) 66 (1957), 249–255. MR 88675, DOI 10.2307/1969997 K. Park, ${\text {GL}}(2,\mathbb {Z})$ action on ${\mathbb {T}^2}$, (preprint).
- William Parry, Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819–828. MR 284567, DOI 10.2307/2373472
- William Parry, Dynamical representations in nilmanifolds, Compositio Math. 26 (1973), 159–174. MR 320277
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Marina Ratner, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), no. 3, 597–614. MR 657240, DOI 10.2307/2007014
- Marina Ratner, Factors of horocycle flows, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 465–489 (1983). MR 721735, DOI 10.1017/S0143385700001723
- Marina Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2) 118 (1983), no. 2, 277–313. MR 717825, DOI 10.2307/2007030
- Marina Ratner, Ergodic theory in hyperbolic space, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 309–334. MR 737411, DOI 10.1090/conm/026/737411
- Marina Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), no. 2, 449–482. MR 1062971, DOI 10.1007/BF01231511
- Marina Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), no. 3-4, 229–309. MR 1075042, DOI 10.1007/BF02391906
- Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. MR 1135878, DOI 10.2307/2944357
- V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 0030584
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
- Dave Witte, Zero-entropy affine maps on homogeneous spaces, Amer. J. Math. 109 (1987), no. 5, 927–961. MR 910358, DOI 10.2307/2374495
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 577-594
- MSC: Primary 22D40; Secondary 28C10, 28D15, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1994-1181187-4
- MathSciNet review: 1181187