A reimbedding algorithm for Casson handles
HTML articles powered by AMS MathViewer
- by Žarko Bižaca
- Trans. Amer. Math. Soc. 345 (1994), 435-510
- DOI: https://doi.org/10.1090/S0002-9947-1994-1236223-3
- PDF | Request permission
Abstract:
An algorithmic proof of Freedman’s Reimbedding Theorem [F2] is given. This reimbedding algorithm produces an explicit description of an imbedded Casson tower with seven levels inside an arbitrary Casson tower with six levels. Our approach is similar to Freedman’s original idea, but we also make essential use of the grope technology from [FQ]. The reimbedding algorithm is applied to obtain an explicitly described Casson handle inside an arbitrary six-level tower (Theorem A), a description of a family of exotic Casson handles (Theorem B) and an explicitly constructed exotic ${\mathbb {R}^4}$.References
- Ž. Bižaca, A handle decomposition of an exotic ${\mathbb {R}^4}$, J. Differential Geom. 39 (1994), Proc. Amer. Math. Soc. (to appear).
—, An explicit family of exotic Casson handles, preprint, 1993.
- Andrew J. Casson, Three lectures on new-infinite constructions in $4$-dimensional manifolds, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 201–244. With an appendix by L. Siebenmann. MR 900253
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- Stefano De Michelis and Michael H. Freedman, Uncountably many exotic $\textbf {R}^4$’s in standard $4$-space, J. Differential Geom. 35 (1992), no. 1, 219–254. MR 1152230
- Michael Hartley Freedman, A fake $S^{3}\times \textbf {R}$, Ann. of Math. (2) 110 (1979), no. 1, 177–201. MR 541336, DOI 10.2307/1971257
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Michael H. Freedman and Laurence R. Taylor, A universal smoothing of four-space, J. Differential Geom. 24 (1986), no. 1, 69–78. MR 857376
- Robert E. Gompf, Three exotic $\textbf {R}^{4}$’s and other anomalies, J. Differential Geom. 18 (1983), no. 2, 317–328. MR 710057
- Robert E. Gompf, Infinite families of Casson handles and topological disks, Topology 23 (1984), no. 4, 395–400. MR 780732, DOI 10.1016/0040-9383(84)90002-8
- Robert E. Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986), no. 3, 353–373. MR 842430, DOI 10.1016/0040-9383(86)90049-2
- Robert E. Gompf, An infinite set of exotic $\textbf {R}^4$’s, J. Differential Geom. 21 (1985), no. 2, 283–300. MR 816673 —, An exotic menagerie, preprint, 1992.
- Robert E. Gompf and Sukhjit Singh, On Freedman reimbedding theorems, Four-manifold theory (Durham, N.H., 1982) Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 277–309. MR 780584, DOI 10.1090/conm/035/780584
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- Robion C. Kirby, The topology of $4$-manifolds, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989. MR 1001966, DOI 10.1007/BFb0089031
- Clifford Henry Taubes, Gauge theory on asymptotically periodic $4$-manifolds, J. Differential Geom. 25 (1987), no. 3, 363–430. MR 882829
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 435-510
- MSC: Primary 57N13; Secondary 57N55
- DOI: https://doi.org/10.1090/S0002-9947-1994-1236223-3
- MathSciNet review: 1236223