Rigidity of ergodic volume-preserving actions of semisimple groups of higher rank on compact manifolds
HTML articles powered by AMS MathViewer
- by Guillaume Seydoux
- Trans. Amer. Math. Soc. 345 (1994), 753-776
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250826-1
- PDF | Request permission
Abstract:
Let M be a compact manifold, H a semisimple Lie group of higher rank (e.g., $H = SL(n,{\mathbf {R}})$ with $n \geq 3$) and $a \in \mathcal {A}(H,M)$ an ergodic H-action on M which preserves a volume v. Such an H-action is conjectured to be "locally rigid": if $a \prime$ is a sufficiently ${C^1}$-small perturbation of a, then there should exist a diffeomorphism $\Phi$ of the manifold M which conjugates $a \prime$ to a. This conjecture would imply that if $\omega$ is an a-invariant geometrical structure on M, then there should exist an. $a \prime$-invariant geometrical structure $\omega \prime$ on M of the same type. Using Kazhdan property, superrigidity for cocycles, and Sobolev spaces techniques we prove, under suitable conditions, two such results with $\omega = v$ and with $\omega$ a Riemannian metric along the leaves of a foliation of M.References
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 152–210. MR 900826, DOI 10.1007/978-1-4899-6664-3_{6}
- Robert J. Zimmer, Ergodic theory and the automorphism group of a $G$-structure, Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 6, Springer, New York, 1987, pp. 247–278. MR 880380, DOI 10.1007/978-1-4612-4722-7_{1}0
- Robert J. Zimmer, On the algebraic hull of an automorphism group of a principal bundle, Comment. Math. Helv. 65 (1990), no. 3, 375–387. MR 1069815, DOI 10.1007/BF02566614 Pierre de la Harpe et Alain Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, 175, Astérisque, Soc. Math. France, 1989.
- A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, DOI 10.1007/BF02776025
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 753-776
- MSC: Primary 58F11; Secondary 57S20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1250826-1
- MathSciNet review: 1250826