Boundary behavior of the Bergman kernel function on some pseudoconvex domains in $\textbf {C}^ n$
HTML articles powered by AMS MathViewer
- by Sanghyun Cho
- Trans. Amer. Math. Soc. 345 (1994), 803-817
- DOI: https://doi.org/10.1090/S0002-9947-1994-1254189-7
- PDF | Request permission
Abstract:
Let $\Omega$ be a bounded pseudoconvex domain in ${\mathbb {C}^n}$ with smooth defining function r and let ${z_0} \in b\Omega$ be a point of finite type. We also assume that the Levi form $\partial \bar \partial r(z)$ of $b\Omega$ has $(n - 2)$-positive eigenvalues at ${z_0}$. Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.References
- Eric Bedford and John Erik Fornæss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), no. 4, 711–719. MR 518102
- David Catlin, Subelliptic estimates for the $\overline \partial$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131–191. MR 898054, DOI 10.2307/1971347
- David W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. MR 978601, DOI 10.1007/BF01215657
- Sanghyun Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), no. 1, 105–119. MR 1179783, DOI 10.1007/BF02571421
- Sanghyun Cho, A lower bound on the Kobayashi metric near a point of finite type in $\textbf {C}^n$, J. Geom. Anal. 2 (1992), no. 4, 317–325. MR 1170478, DOI 10.1007/BF02934584
- John P. D’Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259–265. MR 473231
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- Klas Diederich and John E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), no. 3, 575–592. MR 554386, DOI 10.2307/1971240
- K. Diederich, J. E. Fornæss, and G. Herbort, Boundary behavior of the Bergman metric, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 59–67. MR 740872, DOI 10.1090/pspum/041/740872
- Klas Diederich, Gregor Herbort, and Takeo Ohsawa, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann. 273 (1986), no. 3, 471–478. MR 824434, DOI 10.1007/BF01450734
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
- Gregor Herbort, The growth of the Bergman kernel on pseudoconvex domains of homogeneous finite diagonal type, Nagoya Math. J. 126 (1992), 1–24. MR 1171592, DOI 10.1017/S0027763000003986 L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1979.
- J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542. MR 322365
- Jeffery D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339–360. MR 1185122, DOI 10.2307/2946608
- Takeo Ohsawa, Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. Res. Inst. Math. Sci. 20 (1984), no. 5, 897–902. MR 764336, DOI 10.2977/prims/1195180870
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 803-817
- MSC: Primary 32H10; Secondary 32H15
- DOI: https://doi.org/10.1090/S0002-9947-1994-1254189-7
- MathSciNet review: 1254189