The representation of binary quadratic forms by positive definite quaternary quadratic forms
HTML articles powered by AMS MathViewer
- by A. G. Earnest
- Trans. Amer. Math. Soc. 345 (1994), 853-863
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264145-0
- PDF | Request permission
Abstract:
A quadratic $\mathbb {Z}$-lattice L of rank n is denned to be k-regular for a positive integer $k \leq n$ if L globally represents all quadratic $\mathbb {Z}$-lattices of rank k which are represented everywhere locally by L. It is shown that there exist only finitely many isometry classes of primitive positive definite quadratic $\mathbb {Z}$-lattices of rank 4 which are 2-regular.References
- D. A. Burgess, On character sums and $L$-series. II, Proc. London Math. Soc. (3) 13 (1963), 524–536. MR 148626, DOI 10.1112/plms/s3-13.1.524
- J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 522835 L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. 28 (1927), 333-341.
- J. S. Hsia, Regular positive ternary quadratic forms, Mathematika 28 (1981), no. 2, 231–238 (1982). MR 645103, DOI 10.1112/S0025579300010287
- William J. LeVeque, Fundamentals of number theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. MR 0480290
- Wilhelm Magnus, Über die Anzahl der in einem Geschlecht enthaltenen Klassen von positiv-definiten quadratischen Formen, Math. Ann. 114 (1937), no. 1, 465–475 (German). MR 1513150, DOI 10.1007/BF01594188
- O. T. O’Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843–878. MR 98064, DOI 10.2307/2372837 —, Introduction to quadratic forms, Springer-Verlag, New York, 1963. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Nachr. Wiss. Göttingen Math.-Phys. Kl. (1918), 21-29.
- G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104–110. MR 67162, DOI 10.1112/S0025579300000589
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 853-863
- MSC: Primary 11E12; Secondary 11E20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264145-0
- MathSciNet review: 1264145