On power subgroups of profinite groups
HTML articles powered by AMS MathViewer
- by Consuelo MartĂnez
- Trans. Amer. Math. Soc. 345 (1994), 865-869
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264149-8
- PDF | Request permission
Abstract:
In this paper we prove that if G is a finitely generated pro-(finite nilpotent) group, then every subgroup ${G^n}$, generated by nth powers of elements of G, is closed in G. It is also obtained, as a consequence of the above proof, that if G is a nilpotent group generated by m elements ${x_1}, \ldots ,{x_m}$, then there is a function $f(m,n)$ such that if every word in $x_i^{ \pm 1}$ of length $\leq f(m,n)$ has order n, then G is a group of exponent n. This question had been formulated by Ol’shansky in the general case and, in this paper, is proved in the solvable case and the problem is reduced to the existence of such function for finite simple groups.References
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Marshall Hall Jr., The theory of groups, Chelsea Publishing Co., New York, 1976. Reprinting of the 1968 edition. MR 0414669
- H. Koch, Galoissche Theorie der $p$-Erweiterungen, Springer-Verlag, Berlin-New York; VEB Deutscher Verlag der Wissenschaften, Berlin, 1970 (German). Mit einem Geleitwort von I. R. Ĺ afareviÄŤ. MR 0291139 Kourovka Note-Book, Unsolved problems in group theory, Novosibirsk, 1993. J. P. Serre, Cohomologie galoisienne, Springer-Verlag, 1964.
- Michael Vaughan-Lee, The restricted Burnside problem, 2nd ed., London Mathematical Society Monographs. New Series, vol. 8, The Clarendon Press, Oxford University Press, New York, 1993. MR 1364414
- E. I. Zel′manov, Solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 42–59, 221 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 1, 41–60. MR 1044047
- E. I. Zel′manov, Solution of the restricted Burnside problem for $2$-groups, Mat. Sb. 182 (1991), no. 4, 568–592 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 543–565. MR 1119009
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 865-869
- MSC: Primary 20E18
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264149-8
- MathSciNet review: 1264149