Factoring $L$-functions as products of $L$-functions
HTML articles powered by AMS MathViewer
- by Douglas Grenier
- Trans. Amer. Math. Soc. 345 (1994), 673-692
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273533-8
- PDF | Request permission
Abstract:
We will demonstrate two factorizations of L-functions associated with automorphic forms on $GL(n,\mathbb {R})$, where one factor is a Riemann zetafunction and the other is an L-function associated to an automorphic form for $GL(n - 1,\mathbb {R})$. These will be obtained by establishing the commutation of the Hecke operators and the $\Phi$-operator, a homomorphism from automorphic forms on $GL(n,\mathbb {R})$ to automorphic forms on $GL(n - 1,\mathbb {R})$.References
- A. N. Andrianov, Dirichlet series with Euler product in the theory of Siegel modular forms of genus two, Trudy Mat. Inst. Steklov. 112 (1971), 73–94, 386 (Russian). Collection of articles dedicated to Academician Ivan Matveevič Vinogradov on his eightieth birthday, I. MR 0340178
- Daniel Bump, Automorphic forms on $\textrm {GL}(3,\textbf {R})$, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. MR 765698, DOI 10.1007/BFb0100147
- Daniel Bump, The Rankin-Selberg method: a survey, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 49–109. MR 993311
- Douglas Grenier, An analogue of Siegel’s $\phi$-operator for automorphic forms for $\textrm {GL}_n(\textbf {Z})$, Trans. Amer. Math. Soc. 333 (1992), no. 1, 463–477. MR 1066443, DOI 10.1090/S0002-9947-1992-1066443-0 —$\Phi$ operators for automorphic forms for $GL(n,Z)$, (in preparation).
- Hervé Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309 (French). MR 271275
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Aloys Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), no. 435, x+158. MR 1027069, DOI 10.1090/memo/0435
- Hans Maass, Die Primzahlen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 124 (1951), 87–122 (German). MR 47075, DOI 10.1007/BF01343553 I. Piatetski-Shapiro, Euler subgroups, Lie Groups and Their Representations, Wiley, New York, 1973.
- Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 177–189. MR 0176097
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- Tsuneo Tamagawa, On the $\zeta$-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387–405. MR 144928, DOI 10.2307/1970221
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. II, Springer-Verlag, Berlin, 1988. MR 955271, DOI 10.1007/978-1-4612-3820-1
- Nolan R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287–369. MR 727854, DOI 10.1007/BFb0071436
- N. A. Žarkovskaja, The Siegel operator and Hecke operators, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 30–38 (Russian). MR 0349589
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 345 (1994), 673-692
- MSC: Primary 11F60; Secondary 11F66, 11F70
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273533-8
- MathSciNet review: 1273533