Distribution of partial sums of the Taylor development of rational functions
Author:
V. Nestoridis
Journal:
Trans. Amer. Math. Soc. 346 (1994), 283-295
MSC:
Primary 30B10; Secondary 26C15
DOI:
https://doi.org/10.1090/S0002-9947-1994-1264150-4
MathSciNet review:
1264150
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a rational function regular at 0, which is not a polynomial; let
, denote the partial sums of the Taylor development of
. We investigate the angular distribution of the sequence
, around
. We show that for all
in the plane, except a denumerable union of straight lines passing through 0, this angular distribution exists and is uniform.
- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- [2] Jean-Pierre Kahane, Sur la structure circulaire des ensembles de points limites des sommes partielles d’une série de Taylor, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 247–251 (French). MR 708790
- [3] E. S. Katsoprinakis, On a theorem of Marcinkiewicz and Zygmund for Taylor series, Ark. Mat. 27 (1989), no. 1, 105–126. MR 1004725, https://doi.org/10.1007/BF02386363
- [4] E. S. Katsoprinakis and V. N. Nestoridis, Partial sums of Taylor series on a circle, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 3, 715–736 (English, with French summary). MR 1030846
- [5] Emmanuel S. Katsoprinakis, Taylor series with limit-points on a finite number of circles, Trans. Amer. Math. Soc. 337 (1993), no. 1, 437–450. MR 1106192, https://doi.org/10.1090/S0002-9947-1993-1106192-4
- [6] E. S. Katsoprinakis and V. Nestoridis, An application of Kronecker’s theorem to rational functions, Math. Ann. 298 (1994), no. 1, 145–166. MR 1252823, https://doi.org/10.1007/BF01459731
- [7] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0419394
- [8] J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric series and power series, Trans. Amer. Math. Soc. 50 (1941), 407–453. MR 5130, https://doi.org/10.1090/S0002-9947-1941-0005130-1
- [9] V. Nestoridis and S. K. Pichorides, The circular structure of the set of limit points of partial sums of Taylor series, Séminaire d’Analyse Harmonique. Année 1989/90, Univ. Paris XI, Orsay, 1990, pp. 71–77. MR 1104689
- [10] V. Nestoridis, Limit points of partial sums of Taylor series, Mathematika 38 (1991), no. 2, 239–249 (1992). MR 1147824, https://doi.org/10.1112/S0025579300006598
- [11] -, Limit set of exponential sums, in preparation.
- [12] V. Nestoridis, Limit points of partial sums of Taylor series, Mathematika 38 (1991), no. 2, 239–249 (1992). MR 1147824, https://doi.org/10.1112/S0025579300006598
- [13] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30B10, 26C15
Retrieve articles in all journals with MSC: 30B10, 26C15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1994-1264150-4
Article copyright:
© Copyright 1994
American Mathematical Society