## Geometric consequences of extremal behavior in a theorem of Macaulay

HTML articles powered by AMS MathViewer

- by Anna Bigatti, Anthony V. Geramita and Juan C. Migliore
- Trans. Amer. Math. Soc.
**346**(1994), 203-235 - DOI: https://doi.org/10.1090/S0002-9947-1994-1272673-7
- PDF | Request permission

## Abstract:

F. S. Macaulay gave necessary and sufficient conditions on the growth of a nonnegative integer-valued function which determine when such a function can be the Hilbert function of a standard graded $k$-algebra. We investigate some algebraic and geometric consequences which arise from the extremal cases of Macaulay’s theorem. Our work also builds on the fundamental work of G. Gotzmann. Our principal applications are to the study of Hilbert functions of zero-schemes with uniformity conditions. As a consequence, we have new strong limitations on the possible Hilbert functions of the points which arise as a general hyperplane section of an irreducible curve.## References

- Edward D. Davis,
*Complete intersections of codimension $2$ in $\textbf {P}^r$: the Bezout-Jacobi-Segre theorem revisited*, Rend. Sem. Mat. Univ. Politec. Torino**43**(1985), no. 2, 333–353 (1986). MR**859862** - Joe Harris,
*Curves in projective space*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR**685427**
P. Ellia and S. Strano, - A. V. Geramita and P. Maroscia,
*The ideal of forms vanishing at a finite set of points in $\textbf {P}^{n}$*, J. Algebra**90**(1984), no. 2, 528–555. MR**760027**, DOI 10.1016/0021-8693(84)90188-1 - A. V. Geramita, P. Maroscia, and L. G. Roberts,
*The Hilbert function of a reduced $k$-algebra*, J. London Math. Soc. (2)**28**(1983), no. 3, 443–452. MR**724713**, DOI 10.1112/jlms/s2-28.3.443 - Gerd Gotzmann,
*Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes*, Math. Z.**158**(1978), no. 1, 61–70 (German). MR**480478**, DOI 10.1007/BF01214566 - Mark Green,
*Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann*, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 76–86. MR**1023391**, DOI 10.1007/BFb0085925 - L. Gruson, R. Lazarsfeld, and C. Peskine,
*On a theorem of Castelnuovo, and the equations defining space curves*, Invent. Math.**72**(1983), no. 3, 491–506. MR**704401**, DOI 10.1007/BF01398398
F. S. Macaulay, - Paolo Maroscia,
*Some problems and results on finite sets of points in $\textbf {P}^{n}$*, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin, 1983, pp. 290–314. MR**714754**, DOI 10.1007/BFb0061649 - David Mumford,
*Lectures on curves on an algebraic surface*, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR**0209285** - Grazia Raciti,
*The Hilbert function of a zero-dimensional subscheme in $\textbf {P}^3$*, Ann. Univ. Ferrara Sez. VII (N.S.)**35**(1989), 99–112 (1990) (Italian, with English summary). MR**1079580** - Lorenzo Robbiano,
*Introduction to the theory of Hilbert functions*, The Curves Seminar at Queen’s, Vol. VII (Kingston, ON, 1990) Queen’s Papers in Pure and Appl. Math., vol. 85, Queen’s Univ., Kingston, ON, 1990, pp. Exp. No. B, 26. MR**1089895** - Richard P. Stanley,
*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**485835**, DOI 10.1016/0001-8708(78)90045-2 - Oscar Zariski and Pierre Samuel,
*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581**

*Sections planes et majoration du genre des courbes gauches*, Complex Projective Geometry, Lecture Notes Series, London Math. Soc., no. 179, 1992.

*Some properties of enumeration in the theory of modular systems*, Proc. London Math. Soc.

**26**(1927), 531-555.

## Bibliographic Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**346**(1994), 203-235 - MSC: Primary 14M05; Secondary 13D40, 14N05
- DOI: https://doi.org/10.1090/S0002-9947-1994-1272673-7
- MathSciNet review: 1272673