Geometric consequences of extremal behavior in a theorem of Macaulay
Authors:
Anna Bigatti, Anthony V. Geramita and Juan C. Migliore
Journal:
Trans. Amer. Math. Soc. 346 (1994), 203-235
MSC:
Primary 14M05; Secondary 13D40, 14N05
DOI:
https://doi.org/10.1090/S0002-9947-1994-1272673-7
MathSciNet review:
1272673
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: F. S. Macaulay gave necessary and sufficient conditions on the growth of a nonnegative integer-valued function which determine when such a function can be the Hilbert function of a standard graded -algebra. We investigate some algebraic and geometric consequences which arise from the extremal cases of Macaulay's theorem. Our work also builds on the fundamental work of G. Gotzmann.
Our principal applications are to the study of Hilbert functions of zero-schemes with uniformity conditions. As a consequence, we have new strong limitations on the possible Hilbert functions of the points which arise as a general hyperplane section of an irreducible curve.
- [D] Edward D. Davis, Complete intersections of codimension 2 in 𝑃^{𝑟}: the Bezout-Jacobi-Segre theorem revisited, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 2, 333–353 (1986). MR 859862
- [EH] Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- [ES] P. Ellia and S. Strano, Sections planes et majoration du genre des courbes gauches, Complex Projective Geometry, Lecture Notes Series, London Math. Soc., no. 179, 1992.
- [GeMa] A. V. Geramita and P. Maroscia, The ideal of forms vanishing at a finite set of points in 𝑃ⁿ, J. Algebra 90 (1984), no. 2, 528–555. MR 760027, https://doi.org/10.1016/0021-8693(84)90188-1
- [GMR] A. V. Geramita, P. Maroscia, and L. G. Roberts, The Hilbert function of a reduced 𝑘-algebra, J. London Math. Soc. (2) 28 (1983), no. 3, 443–452. MR 724713, https://doi.org/10.1112/jlms/s2-28.3.443
- [Go] Gerd Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), no. 1, 61–70 (German). MR 480478, https://doi.org/10.1007/BF01214566
- [Gr] Mark Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 76–86. MR 1023391, https://doi.org/10.1007/BFb0085925
- [GLP] L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, https://doi.org/10.1007/BF01398398
- [M] F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
- [Ma] Paolo Maroscia, Some problems and results on finite sets of points in 𝑃ⁿ, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin, 1983, pp. 290–314. MR 714754, https://doi.org/10.1007/BFb0061649
- [Mu] David Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285
- [Ra] Grazia Raciti, The Hilbert function of a zero-dimensional subscheme in 𝑃³, Ann. Univ. Ferrara Sez. VII (N.S.) 35 (1989), 99–112 (1990) (Italian, with English summary). MR 1079580
- [Ro] Lorenzo Robbiano, Introduction to the theory of Hilbert functions, The Curves Seminar at Queen’s, Vol. VII (Kingston, ON, 1990) Queen’s Papers in Pure and Appl. Math., vol. 85, Queen’s Univ., Kingston, ON, 1990, pp. Exp. No. B, 26. MR 1089895
- [S] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, https://doi.org/10.1016/0001-8708(78)90045-2
- [ZS] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Retrieve articles in Transactions of the American Mathematical Society with MSC: 14M05, 13D40, 14N05
Retrieve articles in all journals with MSC: 14M05, 13D40, 14N05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1994-1272673-7
Article copyright:
© Copyright 1994
American Mathematical Society