Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Asymptotics for orthogonal rational functions
HTML articles powered by AMS MathViewer

by A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad PDF
Trans. Amer. Math. Soc. 346 (1994), 307-329 Request permission

Abstract:

Let $\{ {\alpha _n}\}$ be a sequence of (not necessarily distinct) points in the open unit disk, and let \[ {B_0} = 1,\quad {B_n}(z) = \prod \limits _{m = 1}^n {\frac {{\overline {{\alpha _m}} }} {{|{\alpha _m}|}}\frac {{({\alpha _m} - z)}} {{(1 - \overline {{\alpha _m}} z}}),\qquad n = 1,2, \ldots ,} \] ($\frac {{\overline {{\alpha _n}} }} {{|{\alpha _n}|}} = - 1$ when ${\alpha _n} = 0$). Let $\mu$ be a finite (positive) Borel measure on the unit circle, and let $\{ {\varphi _n}(z)\}$ be orthonormal functions obtained by orthogonalization of $\{ {B_n}:n = 0,1,2, \ldots \}$ with respect to $\mu$. Boundedness and convergence properties of the reciprocal orthogonal functions $\varphi _n^*(z) = {B_n}(z)\overline {{\varphi _n}(1/\overline z )}$ and the reproducing kernels ${k_n}(z,w) = \sum \nolimits _{m = 0}^n {{\varphi _m}(z)\overline {{\varphi _m}(w)} }$ are discussed in the situation $|{\alpha _n}| \leqslant R < 1$ for all $n$, in particular their relationship to the Szegö condition $\int _{ - \pi }^\pi {\ln \mu ’(\theta )d\theta > - \infty }$ and noncompleteness in ${L_2}(\mu )$ of the system $\{ {\varphi _n}(z):n = 0,1,2, \ldots \}$. Limit functions of $\varphi _n^{\ast }(z)$ and ${k_n}(z,w)$ are obtained. In particular, if a subsequence $\{ {\alpha _{n(s)}}\}$ converge to $\alpha$, then the subsequence $\{ \varphi _{n(s)}^{\ast }(z)\}$ converges to \[ {e^{i\lambda }}\frac {{\sqrt {1 - |\alpha {|^2}} }} {{1 - \overline \alpha z}}\frac {1} {{{\sigma _{\mu (z)}}}},\qquad \lambda \in {\mathbf {R}},\] where \[ {\sigma _\mu }(z) = \sqrt {2\pi } \exp \left [ {\frac {1} {{4\pi }}\int _{ - \pi }^\pi {\frac {{{e^{i\theta }} + z}} {{{e^{i\theta }} - z}}} \ln \mu ’(\theta )d\theta } \right ].\] The kernels $\{ {k_n}(z,w)\}$ converge to $1/(1 - z\overline w ){\sigma _\mu }(z)\overline {{\sigma _\mu }(w)}$. The results generalize corresponding results from the classical Szegö theory (concerned with the polynomial situation ${\alpha _n} = 0$ for all $n$).
References
  • N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
  • A. Bultheel, On a special Laurent-Hermite interpolation problem, Numerische Methoden der Approximations theorie 6 (L. Collatz, G. Meinardus, and H. Werner, eds.), Birkhäuser, Basel, 1981, pp. 63-79. A. Bultheel and P. Dewilde, Orthogonal functions related to the Nevanlinna-Pick problem, Mathematical Theory of Networks and Systems, Proc. MTNS Conf., Delft, The Netherlands (P. Dewilde, ed.), Western Periodicals, North Hollywood, 1979, pp. 207-211. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, and O. Njåsstad, A. Szegö theory for rational functions, Technical Report TW-131, K.U. Leuven, Dept. of Comput. Sci., May 1990.
  • A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, Orthogonal rational functions similar to Szegő polynomials, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 195–204. MR 1270231
  • Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, The computation of orthogonal rational functions and their interpolating properties, Numer. Algorithms 2 (1992), no. 1, 85–114. MR 1149066, DOI 10.1007/BF02142207
  • Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, A Favard theorem for orthogonal rational functions on the unit circle, Numer. Algorithms 3 (1992), no. 1-4, 81–89. Extrapolation and rational approximation (Puerto de la Cruz, 1992). MR 1199357, DOI 10.1007/BF02141918
  • Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions and quadrature on the unit circle, Numer. Algorithms 3 (1992), no. 1-4, 105–116. Extrapolation and rational approximation (Puerto de la Cruz, 1992). MR 1199359, DOI 10.1007/BF02141920
  • Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, A moment problem associated to rational Szegő functions, Numer. Algorithms 3 (1992), no. 1-4, 91–104. Extrapolation and rational approximation (Puerto de la Cruz, 1992). MR 1199358, DOI 10.1007/BF02141919
  • A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, Moment problems and orthogonal functions, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 49–68. MR 1246851, DOI 10.1016/0377-0427(93)90315-3
  • A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, Orthogonal rational functions with poles on the unit circle, J. Math. Anal. Appl. 182 (1994), no. 1, 221–243. MR 1265893, DOI 10.1006/jmaa.1994.1077
  • A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, Recurrence relations for orthogonal functions, Continued fractions and orthogonal functions (Loen, 1992) Lecture Notes in Pure and Appl. Math., vol. 154, Dekker, New York, 1994, pp. 23–46. MR 1263247
  • C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883
  • Ph. Delsarte, Y. Genin, and Y. Kamp, On the role of the Nevanlinna-Pick problem in circuit and system theory, Internat. J. Circuit Theory Appl. 9 (1981), no. 2, 177–187. MR 612269, DOI 10.1002/cta.4490090204
  • P. Delsarte and Y. Genin, On the role of orthogonal polynomials on the unit circle in digital signal processing applications, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 115–133. MR 1100290
  • Patrick Dewilde and Harry Dym, Schur recursions, error formulas, and convergence of rational estimators for stationary stochastic sequences, IEEE Trans. Inform. Theory 27 (1981), no. 4, 446–461. MR 635524, DOI 10.1109/TIT.1981.1056378
  • M. M. Djrbashian, A survey on the theory of orthogonal systems and some open problems, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 135–146. MR 1100291
  • Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation 1954 (1954), no. 104, 79. MR 0061706
  • —, Orthogonal polynomials, Consultants Bureau, New York, 1961. P. Gonzalez-Vera and O. Njåstad, Szegö functions and multipoint Padé approximation, J. Comput. Appl. Math. 32 (1990), 107-116.
  • Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • Peter Henrici, Applied and computational complex analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros. MR 0372162
  • G. Herglotz, Über Potenzreihen mit positiven reellen Teil im Einheitskreis, Ber. Verh. Sächs, Ges. Wiss. Leipzig Math. Phys. Kl. 63 (1911), 501-511.
  • Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
  • William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
  • William B. Jones and Olav Njåstad, Applications of Szegő polynomials to digital signal processing, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 387–436. MR 1113935, DOI 10.1216/rmjm/1181073015
  • M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR 0458081
  • H. J. Landau, Classical background of the moment problem, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 1–15. MR 921082, DOI 10.1090/psapm/037/921082
  • G. Lopez, Conditions for convergence of multipoint Padé approximants for functions of Stieltjes type, Math. USSR-Sb. 35 (1979), 363-375. —, Szegö’s theorem for polynomials orthogonal with respect to varying measures, Orthogonal Polynomials and their Applications (Alfaro et al., eds.), Lecture Notes in Math., vol. 1329, Springer, Berlin, 1988, pp. 255-260. R. Nevanlinna, Über beschränkte Functionen die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Sect. A 13 (1919), No. 1.
  • K. Pan, Strong and weak convergence of orthogonal systems of rational functions on the unit circle, J. Comput. Appl. Math. 46 (1993), no. 3, 427–436. MR 1223008, DOI 10.1016/0377-0427(93)90038-D
  • K. Pan, On characterization theorems for measures associated with orthogonal systems of rational functions on the unit circle, J. Approx. Theory 70 (1992), no. 3, 265–272. MR 1178373, DOI 10.1016/0021-9045(92)90060-2
  • Georg Pick, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math. Ann. 77 (1915), no. 1, 7–23 (German). MR 1511844, DOI 10.1007/BF01456817
  • I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, Band 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. MR 0083565
  • Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
  • G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975.
Similar Articles
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 346 (1994), 307-329
  • MSC: Primary 42C05; Secondary 30B70, 30D50, 41A20
  • DOI: https://doi.org/10.1090/S0002-9947-1994-1272674-9
  • MathSciNet review: 1272674