Singular polynomials for finite reflection groups
Authors:
C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam
Journal:
Trans. Amer. Math. Soc. 346 (1994), 237-256
MSC:
Primary 33D80; Secondary 20C15, 20F55
DOI:
https://doi.org/10.1090/S0002-9947-1994-1273532-6
MathSciNet review:
1273532
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Dunkl operators involve a multiplicity function as parameter. For generic values of this function the simultaneous kernel of these operators, acting on polynomials, is equal to the constants. For special values, however, this kernel is larger. We determine these singular values completely and give partial results on the representations of that occur in this kernel.
- [B] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57–61 (German). MR 293615, https://doi.org/10.1007/BF01389827
- [CIK]
C. W. Curtis, N. Iwahori, and R. W. Kilmoyer, Hecke algebras and the characters of parabolic type of finite groups with
-pairs, Publ. Math. Inst. Hautes Etudes Sci. 40 (1971), 81-116.
- [D1] Charles F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), no. 1, 33–60. MR 917849, https://doi.org/10.1007/BF01161629
- [D2] Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 951883, https://doi.org/10.1090/S0002-9947-1989-0951883-8
- [D3] Charles F. Dunkl, Operators commuting with Coxeter group actions on polynomials, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 107–117. MR 1035491
- [D4] Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. MR 1145585, https://doi.org/10.4153/CJM-1991-069-8
- [D5] Charles F. Dunkl, Differential-difference operators and monodromy representations of Hecke algebras, Pacific J. Math. 159 (1993), no. 2, 271–298. MR 1214073
- [DJ1] Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, https://doi.org/10.1112/plms/s3-52.1.20
- [DJ2] Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57–82. MR 872250, https://doi.org/10.1112/plms/s3-54.1.57
- [Fe] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- [Fu] William Fulton, Algebraic curves, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry; Notes written with the collaboration of Richard Weiss; Reprint of 1969 original. MR 1042981
- [GU] Akihiko Gyoja and Katsuhiro Uno, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan 41 (1989), no. 1, 75–79. MR 972165, https://doi.org/10.2969/jmsj/04110075
- [H] Gerrit J. Heckman, A remark on the Dunkl differential-difference operators, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 181–191. MR 1168482
- [M] I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, https://doi.org/10.1007/BF01431421
- [O] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333–373. MR 1214452
- [S] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, https://doi.org/10.1007/BF01390173
- [Y] Hiroyuki Yamane, Irreducible projective modules of the Hecke algebras of a finite Coxeter group, J. Algebra 127 (1989), no. 2, 373–384. MR 1028459, https://doi.org/10.1016/0021-8693(89)90258-5
Retrieve articles in Transactions of the American Mathematical Society with MSC: 33D80, 20C15, 20F55
Retrieve articles in all journals with MSC: 33D80, 20C15, 20F55
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1994-1273532-6
Article copyright:
© Copyright 1994
American Mathematical Society