Singular polynomials for finite reflection groups
HTML articles powered by AMS MathViewer
- by C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam
- Trans. Amer. Math. Soc. 346 (1994), 237-256
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273532-6
- PDF | Request permission
Abstract:
The Dunkl operators involve a multiplicity function as parameter. For generic values of this function the simultaneous kernel of these operators, acting on polynomials, is equal to the constants. For special values, however, this kernel is larger. We determine these singular values completely and give partial results on the representations of $G$ that occur in this kernel.References
- E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57–61 (German). MR 293615, DOI 10.1007/BF01389827 C. W. Curtis, N. Iwahori, and R. W. Kilmoyer, Hecke algebras and the characters of parabolic type of finite groups with $BN$-pairs, Publ. Math. Inst. Hautes Etudes Sci. 40 (1971), 81-116.
- Charles F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), no. 1, 33–60. MR 917849, DOI 10.1007/BF01161629
- Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 951883, DOI 10.1090/S0002-9947-1989-0951883-8
- Charles F. Dunkl, Operators commuting with Coxeter group actions on polynomials, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 107–117. MR 1035491
- Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. MR 1145585, DOI 10.4153/CJM-1991-069-8
- Charles F. Dunkl, Differential-difference operators and monodromy representations of Hecke algebras, Pacific J. Math. 159 (1993), no. 2, 271–298. MR 1214073
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57–82. MR 872250, DOI 10.1112/plms/s3-54.1.57
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- William Fulton, Algebraic curves, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry; Notes written with the collaboration of Richard Weiss; Reprint of 1969 original. MR 1042981
- Akihiko Gyoja and Katsuhiro Uno, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan 41 (1989), no. 1, 75–79. MR 972165, DOI 10.2969/jmsj/04110075
- Gerrit J. Heckman, A remark on the Dunkl differential-difference operators, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 181–191. MR 1168482
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI 10.1007/BF01431421
- E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333–373. MR 1214452
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI 10.1007/BF01390173
- Hiroyuki Yamane, Irreducible projective modules of the Hecke algebras of a finite Coxeter group, J. Algebra 127 (1989), no. 2, 373–384. MR 1028459, DOI 10.1016/0021-8693(89)90258-5
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 346 (1994), 237-256
- MSC: Primary 33D80; Secondary 20C15, 20F55
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273532-6
- MathSciNet review: 1273532