$L^ p$-boundedness of pseudo-differential operators of class $S_ {0,0}$
HTML articles powered by AMS MathViewer
- by I. L. Hwang and R. B. Lee
- Trans. Amer. Math. Soc. 346 (1994), 489-510
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264147-4
- PDF | Request permission
Abstract:
We study the ${L^p}$-boundedness of pseudo-differential operators with the support of their symbols being contained in $E \times {{\mathbf {R}}^n}$, where $E$ is a compact subset of ${{\mathbf {R}}^n}$, and their symbols have derivatives with respect to $x$ only up to order $k$, in the Hölder continuous sense, where $k > n/2$ (the case $1 < p \leqslant 2$) and $k > n/p$ (the case $2 < p < \infty$). We also give a new proof of the ${L^p}$-boundedness, $1 < p < \infty$, of pseudo-differential operators of class $S_{0,0}^m$, where $m = m(p) = - n|1/p - 1/2|$, and $a \in S_{0,0}^m$ satisfies $|\partial _x^\alpha \partial _\xi ^\beta a(x,\xi )| \leqslant {C_{\alpha ,\beta }}{\langle \xi \rangle ^m}$ for $(x,\xi ) \in {{\mathbf {R}}^n} \times {{\mathbf {R}}^n},|\alpha | \leqslant k$ and $|\beta | \leqslant k’$, in the Hölder continuous sense, where $k > n/2,k’ > n/p$ (the case $1 < p \leqslant 2$) and $k > n/p,k’ > n/2$ (the case $2 < p < \infty$).References
- M. S. Baouendi, C. Goulaouic, and G. Métivier, Kernels and symbols of analytic pseudodifferential operators, J. Differential Equations 48 (1983), no. 2, 227–240. MR 696868, DOI 10.1016/0022-0396(83)90050-5
- Richard Beals, On the boundedness of pseudo-differential operators, Comm. Partial Differential Equations 2 (1977), no. 10, 1063–1070. MR 477884, DOI 10.1080/03605307708820055 J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
- Gérard Bourdaud and Yves Meyer, Inégalités $L^2$ précisées pour la classe $S^0_{0,0}$, Bull. Soc. Math. France 116 (1988), no. 4, 401–412 (1989) (French, with English summary). MR 1005386, DOI 10.24033/bsmf.2103
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171. MR 450888, DOI 10.1016/S0001-8708(77)80016-9
- Alberto-P. Calderón and Rémi Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23 (1971), 374–378. MR 284872, DOI 10.2969/jmsj/02320374
- Alberto-P. Calderón and Rémi Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185–1187. MR 298480, DOI 10.1073/pnas.69.5.1185
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
- H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Functional Analysis 18 (1975), 115–131. MR 377599, DOI 10.1016/0022-1236(75)90020-8
- Charles Fefferman, $L^{p}$ bounds for pseudo-differential operators, Israel J. Math. 14 (1973), 413–417. MR 336453, DOI 10.1007/BF02764718 Hörmander, Estimates for translation invariant operators in ${L^p}$-spaces, Acta Math. 104 (1960), 93-140.
- I. L. Hwang, The $L^2$-boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302 (1987), no. 1, 55–76. MR 887496, DOI 10.1090/S0002-9947-1987-0887496-4
- Tosio Kato, Boundedness of some pseudo-differential operators, Osaka Math. J. 13 (1976), no. 1, 1–9. MR 410477
- Akihiko Miyachi, Estimates for pseudodifferential operators of class $S_{0,0}$, Math. Nachr. 133 (1987), 135–154. MR 912424, DOI 10.1002/mana.19871330109 —, Estimates for pseudo-differential operators with exotic symbols, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 81-110.
- Tosinobu Muramatu, Estimates for the norm of pseudodifferential operators by means of Besov spaces, Pseudodifferential operators (Oberwolfach, 1986) Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 330–349. MR 897785, DOI 10.1007/BFb0077749
- Michihiro Nagase, On some classes of $L^p$-bounded pseudodifferential operators, Osaka J. Math. 23 (1986), no. 2, 425–440. MR 856896
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- E. M. Stein and Guido Weiss, On the interpolation of analytic families of operators acting on $H^{p}$-spaces, Tohoku Math. J. (2) 9 (1957), 318–339. MR 94704, DOI 10.2748/tmj/1178244785
- Mitsuru Sugimoto, $L^p$-boundedness of pseudodifferential operators satisfying Besov estimates. I, J. Math. Soc. Japan 40 (1988), no. 1, 105–122. MR 917398, DOI 10.2969/jmsj/04010105 —, ${L^p}$-boundedness of pseudo-differential operators satisfying Besov estimates. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 149-162.
- Mitsuru Sugimoto, Pseudo-differential operators on Besov spaces, Tsukuba J. Math. 12 (1988), no. 1, 43–63. MR 949902, DOI 10.21099/tkbjm/1496160636
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145, DOI 10.1007/978-1-4684-8780-0 Wang Rouhuai and Li Chengzhang, On the ${L^p}$-boundedness of several classes of pseudo-differential operators, Chinese Ann. Math. Ser. B 5 (1984), 193-213.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 346 (1994), 489-510
- MSC: Primary 35S05; Secondary 47G30
- DOI: https://doi.org/10.1090/S0002-9947-1994-1264147-4
- MathSciNet review: 1264147