Further results on fixpoints and zeros of entire functions
Authors:
Jian Hua Zheng and Chung-Chun Yang
Journal:
Trans. Amer. Math. Soc. 347 (1995), 37-50
MSC:
Primary 30D05; Secondary 30D20
DOI:
https://doi.org/10.1090/S0002-9947-1995-1179403-9
MathSciNet review:
1179403
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, a quantitative estimation on the number of zeros of the function is derived, where
and
are transcendental entire functions and
a nonconstant polynomial. As an application of this and a further step towards an affirmative answer to a conjecture of Baker, a quantitative estimation on the number of period points of exact order
of
(
th iterate of
) is obtained.
- [1] Irvine Noel Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121–163 (German). MR 97532, https://doi.org/10.1007/BF01187396
- [2] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146–153. MR 107015, https://doi.org/10.1007/BF01181396
- [3] I. N. Baker, Some entire functions with fixpoints of every order, J. Austral. Math. Soc. 1 (1959/1961), 203–209. MR 0114007
- [4] Walter Bergweiler, Proof of a conjecture of Gross concerning fix-points, Math. Z. 204 (1990), no. 3, 381–390. MR 1107470, https://doi.org/10.1007/BF02570881
- [5] Walter Bergweiler, On the fix-points of composite functions, Pacific J. Math. 143 (1990), no. 1, 1–8. MR 1047396
- [6] -, Periodic points of entire functions: Proof of a conjecture of Baker (to appear).
- [7] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 75–92. MR 0271352
- [8] F. Gross and C. F. Osgood, On fixed points of composite entire functions, J. London Math. Soc. (2) 28 (1983), no. 1, 57–61. MR 703464, https://doi.org/10.1112/jlms/s2-28.1.57
- [9] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- [10] W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3) 14a (1965), 93–128. MR 0180679, https://doi.org/10.1112/plms/s3-14A.1.93
- [11] W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967. MR 0217268
- [12] W. K. Hayman, Value distribution and A.P. gaps, J. London Math. Soc. (2) 28 (1983), no. 2, 327–338. MR 713387, https://doi.org/10.1112/jlms/s2-28.2.327
- [13] R. Nevanlinna, Le théorème de Picard-Borel et la théorème des fonctions meromorphes, Gauthier-Villars, Paris, 1929.
- [14] G. S. Prokopovich, Fixpoints of meromorphic functions, Ukrain. Mat. Zh. 25 (1973), 248-260; English transl., Ukrainian Math. J. pp. 198-208.
- [15] P. C. Rosenbloom, The fixpoints of entire functions, Medd. Lunds Univ. Mat. Sem. [Tome Suppl.] (1952), 187-192.
- [16] G. Valiron, Lectures on the general theory of integral functions, Edonard Privat, Toulouse, 1923.
- [17] Le Yang, Zhi fenbu lun ji qi xin yanjiu, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], vol. 9, Kexue Chubanshe (Science Press), Beijing, 1982 (Chinese). MR 724784
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D05, 30D20
Retrieve articles in all journals with MSC: 30D05, 30D20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1995-1179403-9
Article copyright:
© Copyright 1995
American Mathematical Society