Further results on fixpoints and zeros of entire functions
HTML articles powered by AMS MathViewer
- by Jian Hua Zheng and Chung-Chun Yang
- Trans. Amer. Math. Soc. 347 (1995), 37-50
- DOI: https://doi.org/10.1090/S0002-9947-1995-1179403-9
- PDF | Request permission
Abstract:
In this paper, a quantitative estimation on the number of zeros of the function $f \circ g(z) - \alpha (z)$ is derived, where $f$ and $g$ are transcendental entire functions and $\alpha (z)$ a nonconstant polynomial. As an application of this and a further step towards an affirmative answer to a conjecture of Baker, a quantitative estimation on the number of period points of exact order $n$ of ${f_n}$ ($n$th iterate of $f$) is obtained.References
- Irvine Noel Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121–163 (German). MR 97532, DOI 10.1007/BF01187396
- I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146–153. MR 107015, DOI 10.1007/BF01181396
- I. N. Baker, Some entire functions with fixpoints of every order, J. Austral. Math. Soc. 1 (1959/1961), 203–209. MR 0114007, DOI 10.1017/S1446788700025556
- Walter Bergweiler, Proof of a conjecture of Gross concerning fix-points, Math. Z. 204 (1990), no. 3, 381–390. MR 1107470, DOI 10.1007/BF02570881
- Walter Bergweiler, On the fix-points of composite functions, Pacific J. Math. 143 (1990), no. 1, 1–8. MR 1047396, DOI 10.2140/pjm.1990.143.1 —, Periodic points of entire functions: Proof of a conjecture of Baker (to appear).
- J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 75–92. MR 0271352
- F. Gross and C. F. Osgood, On fixed points of composite entire functions, J. London Math. Soc. (2) 28 (1983), no. 1, 57–61. MR 703464, DOI 10.1112/jlms/s2-28.1.57
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3) 14a (1965), 93–128. MR 180679, DOI 10.1112/plms/s3-14A.1.93
- W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
- W. K. Hayman, Value distribution and A.P. gaps, J. London Math. Soc. (2) 28 (1983), no. 2, 327–338. MR 713387, DOI 10.1112/jlms/s2-28.2.327 R. Nevanlinna, Le théorème de Picard-Borel et la théorème des fonctions meromorphes, Gauthier-Villars, Paris, 1929. G. S. Prokopovich, Fixpoints of meromorphic functions, Ukrain. Mat. Zh. 25 (1973), 248-260; English transl., Ukrainian Math. J. pp. 198-208. P. C. Rosenbloom, The fixpoints of entire functions, Medd. Lunds Univ. Mat. Sem. [Tome Suppl.] (1952), 187-192. G. Valiron, Lectures on the general theory of integral functions, Edonard Privat, Toulouse, 1923.
- Le Yang, Zhi fenbu lun ji qi xin yanjiu, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], vol. 9, Kexue Chubanshe (Science Press), Beijing, 1982 (Chinese). MR 724784
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 37-50
- MSC: Primary 30D05; Secondary 30D20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1179403-9
- MathSciNet review: 1179403