On the coefficient groups of equivariant $K$-theory
Author:
Yimin Yang
Journal:
Trans. Amer. Math. Soc. 347 (1995), 77-98
MSC:
Primary 55N91; Secondary 19L47, 55N15, 57S15, 57S17
DOI:
https://doi.org/10.1090/S0002-9947-1995-1257645-1
MathSciNet review:
1257645
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We calculated the coefficient groups of equivariant $K$-theory for any cyclic group, and we proved that, for any compact Lie group, the coefficient groups can only have $2$-torsion. If there is any $2$-torsion, it is detected by $2$-primary finite subgroups of $G$. The rationalization of the coefficient groups then can be easily calculated.
-
W. Burnside, Theory of groups of finite order, Cambridge Univ. Press, 1911.
- Stefan Jackowski, Equivariant $K$-theory and cyclic subgroups, Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne, Newcastle upon Tyne, 1976) Cambridge Univ. Press, Cambridge, 1977, pp. 76–91. London Math. Soc. Lecture Note Series, No. 26. MR 0448377
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI https://doi.org/10.1090/S0273-0979-1981-14886-2
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482
- James E. McClure, Restriction maps in equivariant $K$-theory, Topology 25 (1986), no. 4, 399–409. MR 862427, DOI https://doi.org/10.1016/0040-9383%2886%2990019-4
- Ryszard L. Rubinsztein, Restriction of equivariant $K$-theory to cyclic subgroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 5-6, 299–304 (English, with Russian summary). MR 640476 G. B. Segal, Equivariant $K$-theory, Publ. Math. Inst. Hautes Étude Sci. 34 (1968), 129-151.
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N91, 19L47, 55N15, 57S15, 57S17
Retrieve articles in all journals with MSC: 55N91, 19L47, 55N15, 57S15, 57S17
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society