On the coefficient groups of equivariant $K$-theory
HTML articles powered by AMS MathViewer
- by Yimin Yang
- Trans. Amer. Math. Soc. 347 (1995), 77-98
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257645-1
- PDF | Request permission
Abstract:
We calculated the coefficient groups of equivariant $K$-theory for any cyclic group, and we proved that, for any compact Lie group, the coefficient groups can only have $2$-torsion. If there is any $2$-torsion, it is detected by $2$-primary finite subgroups of $G$. The rationalization of the coefficient groups then can be easily calculated.References
- W. Burnside, Theory of groups of finite order, Cambridge Univ. Press, 1911.
- Stefan Jackowski, Equivariant $K$-theory and cyclic subgroups, Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne, Newcastle upon Tyne, 1976) London Math. Soc. Lecture Note Series, No. 26, Cambridge Univ. Press, Cambridge, 1977, pp. 76–91. MR 0448377
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- James E. McClure, Restriction maps in equivariant $K$-theory, Topology 25 (1986), no. 4, 399–409. MR 862427, DOI 10.1016/0040-9383(86)90019-4
- Ryszard L. Rubinsztein, Restriction of equivariant $K$-theory to cyclic subgroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 5-6, 299–304 (English, with Russian summary). MR 640476 G. B. Segal, Equivariant $K$-theory, Publ. Math. Inst. Hautes Étude Sci. 34 (1968), 129-151.
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 77-98
- MSC: Primary 55N91; Secondary 19L47, 55N15, 57S15, 57S17
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257645-1
- MathSciNet review: 1257645